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Abstract. Reduced-order modeling techniques, including balanced truncation and H2-optimal
model reduction, exploit the structure of linear dynamical systems to produce models that accurately
capture the dynamics. For nonlinear systems operating far away from equilibria, on the other hand,
current approaches seek low-dimensional representations of the state that often neglect low-energy
features that have high dynamical significance. For instance, low-energy features are known to play
an important role in fluid dynamics, where they can be a driving mechanism for shear-layer instabil-
ities. Neglecting these features leads to models with poor predictive accuracy despite being able to
accurately encode and decode states. In order to improve predictive accuracy, we propose to optimize
the reduced-order model to fit a collection of coarsely sampled trajectories from the original system.
In particular, we optimize over the product of two Grassmann manifolds defining Petrov–Galerkin
projections of the full-order governing equations. We compare our approach with existing methods
including proper orthogonal decomposition, balanced truncation-based Petrov–Galerkin projection,
quadratic-bilinear balanced truncation, and the quadratic-bilinear iterative rational Krylov algo-
rithm. Our approach demonstrates significantly improved accuracy both on a nonlinear toy model
and on an incompressible (nonlinear) axisymmetric jet flow with 105 states.
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1. Introduction. Accurate low-dimensional models of physical processes enable
a variety of important scientific and engineering tasks to be carried out. However,
many real-world systems like complex fluid flows in the atmosphere as well as around
and inside aircraft are governed by extremely high-dimensional nonlinear systems—
properties that make tasks like real-time forecasting, state estimation, and control
computationally prohibitive using the original governing equations. Fortunately, the
behavior of these systems is frequently dominated by coherent structures and patterns
[14] that may be modeled with equations whose dimension is much smaller [45, 21].
The goal of “reduced-order modeling” is to obtain simplified models that are suitable
for forecasting, estimation, and control from the vastly more complicated governing
equations provided by physics. For reviews of modern techniques, see [6, 12, 38]. For
a striking display of coherent structures in turbulence, see the shadowgraphs in Brown
and Roshko [14].

When the system of interest is operating close to an equilibrium point, the govern-
ing equations are accurately approximated by their linearization about the equilib-
rium. In this case, a variety of sophisticated and effective reduced-order modeling
techniques can be applied with guarantees on the accuracy of the resulting low-
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dimensional model [4, 12]. Put simply, linearity provides an elegant and complete
characterization of the system’s trajectories in response to inputs, disturbances, and
initial conditions that can be exploited to build simplified models whose trajectories
closely approximate the ones from the original system. For instance, the balanced
truncation method introduced by Moore [33] yields a low-dimensional projection of
the original system that simultaneously retains the most observable and controllable
states of the system and provides bounds on various measures of reduced-order model
error [4]. A computationally efficient approximation called balanced proper orthogo-
nal decomposition (BPOD) [37] is suitable for high-dimensional fluid flow applications.
Another approach is to find a reduced-order model that is as close as possible to a sta-
ble full-order model (FOM) with respect to the H2 norm. Algorithms like the iterative
rational Krylov algorithm (IRKA) [20] are based on satisfying necessary conditions
for H2-optimality.

Various generalizations of linear model reduction techniques have also been devel-
oped for bilinear [6, 8, 19], quadratic-bilinear [9, 11, 10], and lifted nonlinear systems
[27] based on truncated Volterra series expansion of the output. These methods extend
the region of validity for reduced-order models about stable equilibria, yet still suffer
as high-order nonlinearities become dominant far away from an equilibrium. These
techniques also require solutions of large-scale Sylvester or Lyapunov equations, mak-
ing them difficult to apply to fluid flows whose state dimensions can easily exceed 105.

One commonality among the above model reduction approaches is that they uti-
lize oblique projections to retain coordinates or “features” with high variance or “en-
ergy” as well as any coordinates with low variance that significantly influence the
dynamics at future times [12, 37]. These small but dynamically significant features
are known to play an important role in driving the growth of instabilities in “shear
flows” such as mixing layers and jets. Linearizations of these shear flows often re-
sult in nonnormal systems, which can exhibit large transient growth in response to
low-energy perturbations [46, 43]. Some successful approaches [5, 3, 23, 24] have in-
volved oblique projections of the nonlinear dynamics onto subspaces identified from
the dynamics linearized about an equilibrium. However, this approach is often not
satisfactory since the linearized dynamics become inaccurate as the state moves away
from the equilibrium and nonlinear effects become significant. In this paper we il-
lustrate how such nonlinear effects can cause reduced-order models obtained using
the various approaches described above to perform poorly, for instance, on a simple
three-dimensional system as well as on a high-dimensional axisymmetric jet flow.

When dealing with nonlinear systems operating far away from equilibria, non-
linear model reduction approaches tend to follow a two-step process: first identify a
set, typically a smooth manifold or a subspace, near which the state of the system is
known to lie, then model the dynamics in this set either by a projection of the govern-
ing equations or by a black-box data-driven approach. The most common approach
to identify a candidate subspace is proper orthogonal decomposition (POD), whose
application to the study of complex fluid flows was pioneered by Lumley [30]. The
dynamics may also be projected onto nonlinear manifolds using “nonlinear Galerkin”
methods [31, 35]. Recently, more sophisticated manifold-learning techniques like deep
convolutional autoencoders have also been used [29]. The main obstacle encountered
by the manifold-learning and POD-based approaches is that they neglect coordinates
with low variance even if they are important for correctly forecasting the system’s
dynamics. For instance, in our jet flow example, we find that a model with 50 POD
modes capturing 99.6% of the state’s variance still yields poor predictions that diverge
from the FOM.
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OPTIMIZING REDUCED-ORDER MODELS A1683

In order to identify and retain the dynamically important coordinates while re-
maining tractable for very large-scale systems like fluid flows, we shall optimize an
oblique projection operator to minimize the prediction error of the corresponding
reduced-order model on a collection of sampled trajectories. In this framework,
oblique projection operators of a fixed dimension are identified with pairs of sub-
spaces in Grassmann manifolds that meet a transversality condition. We show that
the pairs of subspaces defining oblique projection operators are open, dense, and con-
nected in the product of Grassmann manifolds, and we prove that solutions of our
optimization problem exist when it is appropriately regularized. Optimization is car-
ried out using the Riemannian conjugate gradient algorithm introduced by Sato [39]
with formulas for the exponential map and parallel translation along geodesics given
by Edelman, Arias, and Smith [18]. We provide mild conditions under which the
algorithm is guaranteed to converge to a locally optimal oblique projection operator.

Related techniques based on optimizing projection subspaces have been used to
produce H2-optimal reduced-order models for linear and bilinear systems. Most ap-
proaches focus on optimizing orthogonal projection operators over a single Grassmann
manifold [50, 42, 25] or an orthogonal Stiefel manifold [51, 42, 47, 52, 49]. On the
other hand, an alternating minimization technique over the two Grassmann mani-
folds defining an oblique projection is proposed T. Zeng and Lu [53] for H2-optimal
reduction of linear systems. For systems with quadratic nonlinearities, Jiang and Xu
[25] present an approach to optimize orthogonal projection operators based on the
same truncated generalization of the H2 norm used by Benner, Goyal, and Gugercin
[11]. Our approach differs from the ones mentioned above in that it may be used to
find optimal reduced-order models based on oblique projections for general nonlinear
high-dimensional systems based on sampled trajectories.

2. Projection-based reduced-order models. Consider a physical process,
modeled by an input-output dynamical system

d

d t
x = f(x, u), x(t0) = x0,

y = g(x),
(2.1)

with state x ∈ Rn, input u ∈ Rd, and output y in Rm, each space being equipped
with the Euclidean inner product. We shall often refer to (2.1) as the FOM. Our goal
is to use one or more discrete-time histories of observations yl = y(tl) at sample times
t0 < · · · < tL−1 in order to learn the key dynamical features of (2.1) and produce a
reduced-order model that captures these effects. Throughout the paper we assume
the following.

Assumption 2.1. The functions (x, t) 7→ f(x, u(t)) and x 7→ g(x) in (2.1) have
continuous partial derivatives with respect to x up to second order.

We shall use our observation data to learn an r-dimensional subspace V of Rn in
which to represent the state of the system (2.1). Since f(x, u) might not lie in V when
x ∈ V , we shall also find another r-dimensional subspace W of Rn with V ⊕W⊥ = Rn

in order to construct an oblique projection operator PV,W : Rn → Rn satisfying

PV,Wx ∈ V and x− PV,Wx ∈W⊥ ∀x ∈ Rn.(2.2)

Every rank-r oblique projection operator can be identified with a pair of subspaces
(V,W ) satisfying V ⊕W⊥ = Rn (see section 5.9 of Meyer [32]), and we denote the set
of such subspaces by P. Moreover, if Φ,Ψ ∈ Rn×r are matrices with V = RangeΦ and
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A1684 S. E. OTTO, A. PADOVAN, AND C. W. ROWLEY

W = RangeΨ, then it is easily shown that (V,W ) ∈ P if and only if det(ΨTΦ) ̸= 0,
and the corresponding projection operator is given explicitly by

PV,W = Φ(ΨTΦ)−1ΨT .(2.3)

Applying the projection defined by (V,W ) ∈ P to the FOM (2.1), we obtain a
Petrov–Galerkin reduced-order model whose state x̂ ∈ V evolves according to

d

d t
x̂ = PV,W f(x̂, u), x̂(0) = PV,Wx0(2.4)

with observations given by ŷ = g(x̂). The two subspaces V,W uniquely define the
projection PV,W and the reduced-order model (2.4). With the initial condition x0

and input signal u fixed, the output of the reduced-order model at each sample time
ŷl(V,W ) = ŷ(tl; (V,W )) is a function of the chosen subspaces V,W .

Let Ly : Rm → [0,+∞) be a smooth penalty function for the difference between
each observation yl and the model’s prediction ŷl(V,W ). Let us also introduce a
smooth nonnegative-valued function ρ(V,W ), to be defined precisely in section 3, that
will serve as regularization by preventing minimizing sequences of subspaces (V,W )
from approaching points outside the set P in which valid Petrov–Galerkin projections
can be defined. Using this regularization with a weight γ > 0 allows us to seek a
minimum of the cost defined by

J(V,W ) =
1

L

L−1∑
l=0

Ly (ŷl(V,W )− yl) + γρ(V,W )(2.5)

over all pairs of r-dimensional subspaces (V,W ), subject to the reduced-order dynam-
ics (2.4). Here we shall consider the case when there is a single trajectory generated
from a known initial condition since it will be easy to handle multiple trajectories
from multiple known initial conditions once we understand the single trajectory case.
The cost function (2.5) defines an optimization problem, and in the following section
we define a suitable regularization function ρ and develop a technique for iteratively
solving this problem. We refer to this approach for constructing reduced-order models
as trajectory-based optimization for oblique projections (TrOOP).

Remark 2.2 (integrated objectives and H2-optimal model reduction). We may
also optimize a cost function where the sum in (2.5) is replaced by an integral approx-
imated using numerical quadrature; the details are given in SM4.1. When the FOM
(2.1) is a stable linear-time-invariant system and the trajectories y(t) are generated by
unit impulse responses from each input channel, then the H2 norm [4] of the difference
between the reduced-order model and the FOM can be written as a sum of integrated
objectives

∫∞
0
∥ŷ(t; (V,W ))− y(t)∥22 d t. After approximating these integrals by inte-

grals over finite time-horizons, we may employ the technique described in SM4.1 for
H2-optimal model reduction.

3. Optimization domain, representatives, and regularization. The set
containing all r-dimensional subspaces of Rn can be endowed with the structure of a
compact Riemannian manifold called the Grassmann manifold, which has dimension
nr − r2 and is denoted Gn,r. Therefore, our optimization problem entails minimizing
the cost given by (2.5) over the subset P of the product manifold M = Gn,r × Gn,r
on which oblique projection operators are defined. The goal of this section will be to
characterize the topology of the set P and to introduce an appropriate regularization
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OPTIMIZING REDUCED-ORDER MODELS A1685

function ρ so that we may instead consider the unconstrained minimization of (2.5)
over M. We also describe how to work with matrix representatives of the relevant
subspaces that can be stored in a computer.

3.1. Grassmann manifold and representatives of subspaces. First we de-
scribe some basic properties of the Grassmann manifold that can be found in [1, 2, 7].
If Rn,r

∗ denotes the smooth manifold of n × r matrices with linearly independent
columns, then Gn,r can be identified with the quotient manifold of Rn,r

∗ under the
action of the general linear group GLr defining changes of basis GLr ×Rn,r

∗ → Rn,r
∗ :

(M,X) 7→ XM . Since this group action is free and proper, the quotient manifold
theorem (Theorem 21.10 in [28]) ensures that Rn,r

∗ /GLr is a smooth manifold and the
quotient map sending X ∈ Rn,r

∗ to its equivalence class in Rn,r
∗ /GLr,

[X] = {Y ∈ Rn,r
∗ : Y = XM for some M ∈ GLr } ,(3.1)

is a smooth submersion. Each subspace RangeX ∈ Gn,r is identified with the equiv-
alence class [X] ∈ Rn,r

∗ /GLr.
In order to optimize the pairs of abstract subspaces (V,W ) ∈ M = Gn,r × Gn,r

defining oblique projections, we work with the matrix representative of these subspaces
in the so-called structure space M̄ = Rn,r

∗ ×Rn,r
∗ . A pair of matrices (Φ,Ψ) ∈ M̄ are

representatives of (V,W ) ∈ M if V = RangeΦ and W = RangeΨ. The “canonical
projection” map π : M̄ →M is defined by

π : (Φ,Ψ) 7→ (RangeΦ,RangeΨ),(3.2)

and it is clear that the set of all representatives of (V,W ) ∈ M is given by the pre-
image set π−1(V,W ). The canonical projection map is a surjective submersion since
its component maps Φ 7→ RangeΦ and Ψ 7→ RangeΨ are surjective submersions.
Consequently, Theorem 4.29 in Lee [28] provides the useful result that a function
F : M → N , with N another smooth manifold, is smooth if and only if F ◦ π is
smooth.

Suppose that (V,W ) ∈ P is a pair of subspaces that define an oblique projec-
tion and (Φ,Ψ) ∈ π−1(V,W ) is a choice of representatives. We observe that the
oblique projection operator given explicitly by (2.3) is independent of the choice of
representatives—as it should be, given that PV,W is uniquely defined in terms of ab-
stract subspaces alone. Using the representatives and an r-dimensional state z defined
by x̂ = Φz ∈ V , we obtain a representative of the reduced-order model (2.4) given by

d

d t
z = (ΨTΦ)−1ΨT f(Φz, u) =: f̃ (z, u; (Φ,Ψ)) , z(t0) = (ΨTΦ)−1ΨTx0,

ŷ = g(Φz) =: g̃ (z; (Φ,Ψ))
(3.3)

that can be simulated on a computer. While the state z(t) of (3.3) depends on the
choice of (Φ,Ψ) ∈ π−1(V,W ), the output ŷ(t) depends only on the subspaces (V,W )
and not on our choice of matrix representatives.

Consequently, any function of (Φ,Ψ) that depends only on the output ŷ(t) of (3.3)
can be viewed as a function onM composed with the canonical projection π. Hence,
we can evaluate our cost function (2.5) for a subspace pair (V,W ) by computing

J̄(Φ,Ψ) = J(π(Φ,Ψ))(3.4)

for any choice of represenatives (Φ,Ψ) ∈ π−1(V,W ), that is, by evaluating the sum
in (2.5) using the output ŷ(t) generated by (3.3). Moreover, Theorem 4.29 in Lee [28]
tells us that J is smooth if and only if J̄ is smooth.
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3.2. Topology of the optimization problem domain. The main result of
this section is the following.

Theorem 3.1 (topology of subspaces that define oblique projections). Let P
denote the pairs of subspaces (V,W ) ∈ Gn,r × Gn,r such that V ⊕W⊥ = Rn. Then P
is open, dense, and connected in Gn,r ×Gn,r. Moreover, P is diffeomorphic to the set
of rank-r projection operators

P =
{
P ∈ Rn×n : P 2 = P and rank(P ) = r

}
.(3.5)

Proof. See SM1.

The openness of P in Gn,r×Gn,r means that it is a submanifold of Gn,r×Gn,r with the
same dimension dimP = 2nr− 2r2. The connectedness result is especially important
since it means than an optimization routine can access any point in the set P by a
smooth path from any initial guess without ever encountering the “bad set” Gn,r ×
Gn,r \ P. In other words the bad set doesn’t cut off access to any region of P by an
optimizer that progresses along a smooth path, e.g., a gradient flow.

The reduced-order model (2.4) may not have a solution over the desired time
interval [t0, tL−1] for every projection operator defined by (V,W ) ∈ P. The following
result characterizes the appropriate domain D ⊂ P over which the reduced-order
model has a unique solution as well as the key properties of solutions when they
exist.

Proposition 3.2 (properties of reduced-order model solutions). When the
reduced-order model (2.4) has a solution over the time interval [t0, tL−1], it is unique.
Let D ⊂ P denote the set of subspace pairs (V,W ) for which the resulting reduced-order
model (2.4) has a unique solution over the time interval [t0, tL−1], and let x̂(t; (V,W ))
denote the state of (2.4) with (t, (V,W )) ∈ [t0, tL−1]×D. Then

1. D is open in P, and hence D is also open in Gn,r × Gn,r;
2. when ∂

∂xf(x, u(t)) is bounded, then D = P;
3. if (x, t) 7→ f(x, u(t)) has continuous partial derivatives with respect to x up to

order k ≥ 1, then (t, (V,W )) 7→ x̂(t; (V,W )) is continuously differentiable with
respect to (V,W ) up to order k on [t0, tL−1]×D;

4. if {(Vk,Wk)}∞k=1 ⊂ D is a sequence approaching (Vk,Wk) → (V0,W0) ∈ P \ D
and x̂(t; (Vk,Wk)) are the corresponding solutions of (2.4), then

max
t∈[t0,tL−1]

∥x̂(t; (Vk,Wk))∥ → ∞ as k →∞.(3.6)

Proof. The claims follow from standard results in the theory of ODEs that can
be found in Kelly and Peterson [26]. We give the detailed proof in SM2.

In particular, Proposition 3.2 shows that the solutions produced by the reduced-
order model are twice continuously differentiable over D and blow up as points outside
of D are approached. In the special case when the governing equations (2.1) have
a bounded Jacobian, we may dispense with D entirely since the projection-based
reduced-order model always has a unique solution.

3.3. Regularization and existence of a minimizer. Without regularization,
we cannot guarantee a priori that a sequence of subspace pairs with decreasing cost
doesn’t approach a point outside of the set P where projection operators are defined.
That is, a minimizer for the cost function (2.5) may not even exist in P, in which case
our optimization problem would have no solution. In order to address this issue, we
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introduce a regularization function ρ(V,W ) into the cost (2.5) that “blows up” to +∞
as the subspaces (V,W ) approach any point outside of P and nowhere else. In order
to do this, we use the fact that (V,W ) ∈ P if and only if all matrix representatives
(Φ,Ψ) ∈ π−1(V,W ) have det (ΨTΦ) ̸= 0. While this condition characterizes the set
P, we cannot use det (ΨTΦ) directly since its nonzero value depends on the choice of
representatives. But this problem is easily solved by an appropriate normalization,
leading us to define the regularization of (2.5) in terms of representatives according
to

ρ ◦ π(Φ,Ψ) = − log

(
det(ΨTΦ)2

det(ΦTΦ) det(ΨTΨ)

)
.(3.7)

We observe that the function ρ : P → R in (3.7) is well defined because ρ◦π(Φ,Ψ) does
not depend on the representatives (Φ,Ψ) thanks to the product rule for determinants.

The following theorem shows that the regularization defined by (3.7) has the
desirable properties that it vanishes when V = W and “blows up” as (V,W ) escapes
the set P. When V = W , the resulting projection operator PV,V is the orthogonal
projection onto V .

Theorem 3.3 (regularization). The minimum value of ρ defined by (3.7) over P
is zero, and this minimum value ρ(V,W ) = 0 is attained if and only if V = W . On the
other hand, if (V0,W0) ∈ Gn,r×Gn,r \P and {(Vn,Wn)}∞n=1 is a sequence of subspaces
in P such that (Vn,Wn)→ (V0,W0) as n→∞, then limn→∞ ρ(Vn,Wn) =∞.

Proof. See SM3.

We must also rule out the possibility that a sequence of subspace pairs with
decreasing cost approaches a point where the reduced-order model does not have a
unique solution. By Proposition 3.2, we do not have this problem when the FOM
has a bounded Jacobian since the reduced-order model always has a unique solution,
i.e., D = P. On the other hand, when D ̸= P we may accomplish this by choosing
a cost function that blows up if the states of the reduced-order model blow up. In
particular, we assume the following.

Assumption 3.4. Let D be as in Proposition 3.2 and P be the subset of (V,W ) ∈
Gn,r×Gn,r for which V ⊕W⊥ = Rn. If D ≠ P and {(Vk,Wk)}∞k=1 ⊂ D is any sequence
producing solutions x̂(t; (Vk,Wk)) of the reduced-order model (2.4) such that

max
t∈[t0,tL−1]

∥x̂(t; (Vk,Wk))∥ → ∞ as k →∞,(3.8)

then we assume that J(Vk,Wk)→∞.

In practice, this is a reasonable assumption if g(x)→∞ as ∥x∥ → ∞ and Ly(y)→
∞ as ∥y∥ → ∞. Alternatively, one could add a new regularization term to the cost
function (2.5) that penalizes reduced-order model states with large magnitudes. In
Corollary SM3.1 we show that a minimizer of the cost function (2.5) exists in the
valid set D ⊂ P when Assumption 3.4 holds, and we use the regularization described
by (3.7) with any positive weight γ > 0.

4. Optimization algorithm. In this section we describe how to optimize the
projection subspaces by minimizing the cost function (2.5) over the product of Grass-
mann manifoldsM = Gn,r×Gn,r using the Riemannian conjugate gradient algorithm
described by Sato in [39]. We use the exponential map and parallel translation along
geodesics given by Edelman, Arias, and Smith [18], and we provide an adjoint sensi-
tivity method for computing the gradient of the cost function. Other geometric op-
timization algorithms such as stochastic gradient descent [13, 41] and quasi-Newton
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methods [36, 22] are also well suited for high-dimensional problems and rely on the
same key ingredients we provide here.

4.1. Computing the gradient. In order to compute the gradient we endow
Gn,r with a Riemannian metric, and we use the product metric onM = Gn,r × Gn,r.
This allows us to perform key operations such as constructing geodesics and parallel
translates of tangent vectors on M by treating its two components separately [28].
We follow Absil, Mahony, and Sepulchre [2], whereby the metric on Gn,r is induced
by a compatible metric on Rn×r

∗ acting on lifted representatives of tangent vectors in
a prescribed “horizontal space.” The Riemannian metric we adopt for the structure
space M̄ = Rn×r

∗ × Rn×r
∗ is given by the product metric

⟨(X1, Y1), (X2, Y2)⟩(Φ,Ψ) = Tr
[
(ΦTΦ)−1XT

1 X2

]︸ ︷︷ ︸
⟨X1, X2⟩Φ

+Tr
[
(ΨTΨ)−1Y T

1 Y2

]︸ ︷︷ ︸
⟨Y1, Y2⟩Ψ

.(4.1)

The gradient, expressed in terms of lifted representatives, is then found by computing
the gradient with respect to the matrix representatives in the structure space.

For any tangent vector ξ ∈ TpM and representative p̄ ∈ M̄ such that p = π(p̄),
there is an infinite number of possible ξ̄ ∈ Tp̄M̄ that could serve as representatives
of ξ in the sense that ξ = Dπ(p̄)ξ̄. A unique representative of ξ is identified by
observing that the preimage π−1(p) of any p ∈ M is a smooth submanifold of M̄
yielding a decomposition of the tangent space Tp̄M̄ into a direct sum of the “vertical
space” defined by Vp̄ = Tp̄π

−1(p) and the “horizontal space” defined as its orthogonal
complement Hp̄ = V⊥

p̄ . The horizontal and vertical spaces for a product manifold are
the products of the horizontal and vertical spaces for each component in the Cartesian
product, and we have

VΦ =
{
ΦA : A ∈ Rr×r

}
, HΦ =

{
X ∈ Rn,r : ΦTX = 0

}
, Φ ∈ Rn,r

∗ .(4.2)

Using the horizontal distribution on the structure space, we have the following.

Definition 4.1 (horizontal lift [2]). Given ξ ∈ TpM and a representative p̄ ∈
π−1(p), the “horizontal lift” of ξ is the unique element ξ̄p̄ ∈ Hp̄ such that ξ = Dπ(p̄)ξ̄p̄.

The horizontal lifts of a tangent vector ξ ∈ TV Gn,r to either of the component Grass-
mann manifolds at different representatives transform according to

ξ̄ΦS = ξ̄ΦS ∈ Rn×r ∀S ∈ GLr(4.3)

for every Φ ∈ Rn,r
∗ with RangeΦ = V , as shown by Example 3.6.4 in [2]. The structure

space metric (4.1) induces a Riemannian product metric onM = Gn,r × Gn,r defined
in terms of horizontal lifts

⟨(ξ1, ζ1), (ξ2, ζ2)⟩(V,W ) = Tr
[
(ΦTΦ)−1(ξ̄1Φ)

T ξ̄2Φ
]︸ ︷︷ ︸

⟨ξ1, ξ1⟩V

+Tr
[
(ΨTΨ)−1(ζ̄1Ψ)

T ζ̄2Ψ
]︸ ︷︷ ︸

⟨ζ1, ζ2⟩W

.(4.4)

This metric is independent of the choice of representatives (Φ,Ψ) ∈ π−1(V,W ) thanks
to the transformation property (4.3).

An important consequence of the orthogonality of the horizontal and vertical
subspaces is that the horizontal lift of the gradient of the cost function J :M→ R is
given by the gradient of J̄ = J ◦ π : M̄ → R [2]; that is,

grad J(V,W )(Φ,Ψ) = grad F̄ (Φ,Ψ) ∀(Φ,Ψ) ∈ π−1(V,W ).(4.5)
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This means that the gradient computed with respect to the matrix representatives
in the structure space is the appropriate lifted representative in the horizontal space
at (Φ,Ψ) of the gradient tangent to M at (V,W ). The gradient of the lifted cost
function J̄ can be computed using the adjoint sensitivity method described below in
Theorem 4.2. The analogous adjoint sensitivity method for a cost function in which
the error is integrated over time, rather than being summed over {tl}L−1

l=0 as in (2.5),
is provided by Theorem SM4.1.

Theorem 4.2 (gradient with respect to model parameters). Suppose we have
observation data {y1, . . . , yL} generated by the FOM (2.1) at sample times t0 < · · · <
tL−1 with initial condition x0 and input signal u. Consider the reduced-order model
representative (3.3) with parameters θ = (Φ,Ψ) in the structure space M̄, which is a
Riemannian manifold. With π(θ) ∈ D, let ŷi(θ) = ŷ(ti; θ) be the observations at the
corresponding times ti generated by (3.3), and let z(t; θ) denote the state trajectory of
(3.3). Then the cost function

J̄(θ) :=

L−1∑
i=0

Ly(ŷi(θ)− yi),(4.6)

measuring the error between the observations generated by the models, is differentiable
at every θ ∈ π−1(D). Let

F (t) =
∂f̃

∂z
(z(t; θ), u(t); θ) : Rr → Rr,(4.7a)

S(t) =
∂f̃

∂θ
(z(t; θ), u(t); θ) : TθM̄ → Rr,(4.7b)

H(t) =
∂g̃

∂z
(z(t; θ); θ) : Rr → Rm,(4.7c)

T (t) =
∂g̃

∂θ
(z(t; θ); θ) : TθM̄ → Rm,(4.7d)

denote the linearized dynamics and observation functions around z(t; θ), let gi =
gradLy(ŷi(θ)− yi), and define an adjoint variable λ(t) that satisfies

− d

d t
λ(t) =F (t)∗λ(t), t ∈ (ti, ti+1], 0 ≤ i < L− 1,(4.8a)

λ(ti) = lim
t→t+i

λ(t) +H(ti)
∗gi,(4.8b)

λ(tL−1) =H(tL−1)
∗gL−1.(4.8c)

Here (·)∗ denotes the adjoint of a linear operator with respect to the inner products
on the appropriate spaces. Then the gradient of the cost function (4.6) is given by

grad J̄(θ) =

(
∂z

∂θ
(t0; θ)

)∗

λ(t0) +

∫ tL−1

t0

S(t)∗λ(t) d t+

L−1∑
i=0

T (ti)
∗gi.(4.9)

Proof. See SM4.

The explicit form of each term required to compute the horizontal lift of the
gradient of the cost function (2.5) using Theorem 4.2 is provided by the following
Proposition 4.3. In order to simplify these expressions, we work with orthonormal
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representatives, i.e., (Φ,Ψ) ∈ π−1(V,W ) such that ΦTΦ = ΨTΨ = Ir together with
the additional condition det(ΨTΦ) > 0. Such representatives can always be obtained
via QR-factorization and adjusting the sign of a column of Φ or Ψ. The horizontal
lift of the gradient computed at any other representatives (ΦS,ΨT ) with S, T ∈ GLr

can be obtained from the horizontal lift of the gradient computed at (Φ,Ψ) via (4.3).

Proposition 4.3 (required terms for gradient). We assume that the repre-
sentatives (Φ,Ψ) ∈ π−1(V,W ) have been chosen such that ΦTΦ = ΨTΨ = Ir and
det(ΨTΦ) > 0, and we let A = (ΨTΦ)−1. Then the terms required to compute the
gradient of the cost function using the model (3.3) with respect to the representatives
in the structure space via Theorem 4.2 are given by

F (t)∗ =

(
∂f̃

∂z

(
z(t), u(t)

))T

,(4.10)

S(t)∗v =

((
∂f

∂x

(
Φz(t), u(t)

))T

ΨAT vz(t)T −ΨAT vf̃(z(t), u(t))T ,(
f
(
Φz(t), u(t)

)
− Φf̃

(
z(t), u(t)

))
vTA

)
∀v ∈ Rr,

(4.11)

H(t)∗ =

(
∂g̃

∂z

(
z(t)

))T

,(4.12)

T (t)∗w =

((
∂g

∂x

(
Φz(t)

))T

wz(t)T , 0

)
∀w ∈ Rm,(4.13)

(
∂z

∂(Φ,Ψ)

(
t0; (Φ,Ψ)

))T

v =
(
−ΨAT vz(t0)

T ,
(
x0 − Φz(t0)

)
vTA

)
∀v ∈ Rr.

(4.14)

The gradient of the regularization function (3.7) is given by

grad(ρ ◦ π)(Φ,Ψ) = 2
(
Φ−ΨAT , Ψ− ΦA

)
.(4.15)

Proof. See SM4.

We provide Algorithm 4.1, below, to compute the gradient according to Theo-
rem 4.2, with the appropriate terms given in Proposition 4.3. In SM4.1, we provide
Algorithm SM4.1 for computing the gradient of an objective where the modeling error
is integrated over time rather than being summed over {tl}L−1

l=0 .
The computational cost of Algorithm 4.1 is dominated by the steps that re-

quire evaluation of objects resembling the full-order dynamics, namely, steps 2 and 7.
These are of three kinds: evaluating the nonlinear right-hand side f(x, u), acting on
a vector with the linearized right-hand side ∂f(x, u)/∂x, or acting with its transpose
(∂f(x, u)/∂x)T . For a quadratically bilinear FOM and an r-dimensional reduced-
order model, assembling the reduced-order model (step 2) requires O(r2) FOM-like
evaluations. Evaluating S(t)∗λ(t) in 7 using (4.11) involves querying f(x, u) and
(∂f(x, u)/∂x)T acting on a vector. Hence, the cost (per iteration) of step 7 is O(q)
FOM-like evaluations, where q is the number of quadrature points used to approxi-
mate the integral over the interval [tl, tl+1]. When using high-order quadrature, one
may take q to be between one and ten. Thus, the total cost to compute the gradient
is O(r2 + qL) FOM-like evaluations. Most (if not all) modern fluid flow solvers are
equipped with the necessary functionality to perform all the aforementioned FOM-
like evaluations, so the method that we propose can be easily integrated with existing
software.
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Algorithm 4.1 Compute the cost function gradient with respect to (Φ,Ψ)

1: Input: Orthonormal representatives (Φ,Ψ) ∈ π−1(V,W ) with det(ΨTΦ) > 0,
initial condition x0, observations {yl}L−1

l=0 , regularization weight γ.
2: Assemble and simulate the reduced-order model representative (3.3) from initial

condition z0 = ΨTx0, storing predicted outputs {ŷl}L−1
l=0 and trajectory z(t) via

interpolation.
3: Initialize the gradient: grad J̄ ← T (tL−1)

∗ gradLy(ŷL−1 − yL−1).
4: Compute adjoint variable at final time: λ(tL−1)= H(tL−1)

∗ gradLy(ŷL−1−yL−1).
5: for l = L− 2, L− 3, . . . , 0 do
6: Solve the adjoint equation (4.8a) backward in time over the interval [tl, tl+1]

using the linearized reduced-order model dynamics (4.10), and store λ(t) on
this interval.

7: Compute the integral component of (4.9) over the interval [tl, tl+1]: grad J̄ ←
grad J̄ +

∫ tl+1

tl
S(t)∗λ(t) d t using Gauss–Legendre quadrature.

8: Add lth element of the sum in (4.9): grad J̄ ← grad J̄ + T (tl)
∗ gradLy(ŷl − yl).

9: Add “jump” (4.8b) to adjoint variable: λ(tl)← λ(tl) +H(tl)
∗ gradLy(ŷl − yl).

10: end for
11: Add gradient due to initial condition: grad J̄ ← grad J̄ + ( ∂z

∂(Φ,Ψ) (t0))
∗λ(t0).

12: Normalize by trajectory length: grad J̄ ← grad J̄/L.
13: Add regularization: grad J̄ ← grad J̄ + γ grad(ρ ◦ π)(Φ,Ψ).
14: return grad J̄

Remark 4.4. For a general nonlinear system with sparse coupling between states
the discrete empirical interpolation method (DEIM) [16] could eliminate the costly
reduced-order model assembly step by replacing f with Πf in (2.4), where Π is the
DEIM projector.

4.2. Geometric conjugate gradient algorithm. In Algorithm 4.2, below,
we give the implementation details for the geometric conjugate gradient method
described by Sato [39], with the required retraction and vector transport provided
by the exponential map and parallel translation along geodesics described by The-
orems 2.3 and 2.4 in Edelman, Arias, and Smith [18]. Given a search direction
ηk = (ξk, ζk) ∈ Tpk

(Gn,r × Gn,r) at the current iterate pk = (Vk,Wk) and a step size
αk ≥ 0, the next iterate is computed using the exponential map [17, 18] according to

pk+1 = exppk
(αkηk) =

(
expVk

(αkξk), expWk
(αkζk)

)
.(4.16)

Confining our attention to the one-dimensional objective Jk(α) = J(exppk
(αηk)) de-

fined along the resulting geodesic, the step size αk is selected in order to satisfy the
Wolfe conditions

Jk(αk) ≤ Jk(0) + c1αkJ
′
k(0),(4.17a)

J ′
k(αk) ≥ c2J

′
k(0),(4.17b)

where 0 < c1 < c2 < 1 are user-specified constants and J ′
k denotes the derivative of

Jk. Such a step size can always be found, and we use the simple bisection method
described in [15] to find one.

The search direction incorporates second-order information about the cost func-
tion by combining the gradient of the cost at the current iterate with the previous
search direction. The previous search direction ηk−1 ∈ Tpk−1

M is moved to the
tangent space at the current iterate Tpk

M via parallel translation [17] along the ge-
odesic, denoted Tp,η : TpM → TRp(η)M. We use the explicit formula for parallel

D
ow

nl
oa

de
d 

11
/3

0/
25

 to
 1

88
.9

2.
13

6.
18

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1692 S. E. OTTO, A. PADOVAN, AND C. W. ROWLEY

Algorithm 4.2 Geometric conjugate gradient algorithm for model reduction

1: Input: Orthonormal representatives (Φ0,Ψ0) of initial subspaces with
det(ΨT

0 Φ0) > 0, stopping threshold ε > 0, and Wolfe condition coefficients
0 < c1 < c2 < 1.

2: Compute cost J̄(Φ0,Ψ0) and gradient grad J̄0 using Algorithm 4.1
3: Initialize the search direction (X0, Y0) = grad J̄0, and set k = 0.
4: while

〈
grad J̄k, grad J̄k

〉
(Φk,Ψk)

> ε, given by (4.1), do

5: Compute SVDs Xk = UXΣXV T
X , Yk = UY ΣY V

T
Y with V V T = Ir.

6: Define geodesic curves (via [18, Thm. 2.3])

Φ(α) = [ΦkVX cos(αΣX) + UX sin(αΣX)]V T
X ,

Ψ(α) = [ΨkVY cos(αΣY ) + UY sin(αΣY )]V
T
Y

and line-search objective Jk(α) = J̄(Φ(α),Ψ(α)).
7: Compute step size αk satisfying Wolfe conditions (4.17) using bisection [15] and

orthonormal representatives of next iterate (Φk+1,Ψk+1) = (Φ(αk),Ψ(αk)).
8: Compute parallel translation of search direction (via [18, Thm. 2.4])

X̃k = [−ΦkVX sin(αkΣX) + UX cos(αkΣX)]UT
XXk +Xk − UXUT

XXk,

Ỹk = [−ΨkVY sin(αkΣY ) + UY cos(αkΣY )]U
T
Y Yk + Yk − UY U

T
Y Yk.

9: Multiply first column of Φk+1 and X̃k by sgn det(ΨT
k+1Φk+1).

10: Compute cost J̄(Φk+1,Ψk+1) and gradient grad J̄k+1 using Algorithm 4.1.
11: Using (4.1), compute Riemannian Dai–Yuan coefficient

βk+1 =
⟨grad J̄k+1, grad J̄k+1⟩(Φk+1,Ψk+1)

⟨grad J̄k+1, (X̃k, Ỹk)⟩(Φk+1,Ψk+1) + ⟨grad J̄k, (Xk, Yk)⟩(Φk,Ψk)

.

12: Compute next search direction (Xk+1, Yk+1) = grad J̄k+1 + βk+1(X̃k, Ỹk).
13: Update k ← k + 1.
14: end while
15: return orthonormal representatives (ΦK ,ΨK) of the optimized projection sub-

spaces and the final cost J̄(ΦK ,ΨK)

translation along geodesics on the Grassmann manifold given by Theorem 2.4 in [18]
and the fact that T(V,W ),(ξ1,ζ1)(ξ2, ζ2) = (TV,ξ1ξ2, TW,ζ1ζ2) on the product manifold
M = Gn,r × Gn,r. The next search direction is computed according to

ηk = − grad J(pk) + βkTpk−1,αk−1ηk−1
(ηk−1),(4.18)

where the coefficient βk is defined differently for different conjugate gradient algo-
rithms. We use the Riemannian Dai–Yuan coefficient proposed by Sato [39] and given
by

βk =
⟨grad J(pk), grad J(pk)⟩pk〈

grad J(pk), Tαk−1ηk−1
(ηk−1)

〉
pk
− ⟨grad J(pk−1), ηk−1⟩pk−1

(4.19)

since it yields excellent performance in practice and provides guaranteed convergence
when the step sizes satisfy the Wolfe conditions [48].
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4.3. Convergence guarantees. The proofs of convergence for the geometric
conjugate gradient algorithms described in [36, 40, 39] (with retraction provided by
the exponential map) rely on Lipschitz assumptions for the derivative of J ◦ exppk

along the search direction ηk. In particular, if there is a fixed Lipschitz constant LJ

so that for each iteration k = 0, 1, 2, . . ., we have∣∣D(J ◦ exppk
)(αkηk)ηk −D(J ◦ exppk

)(0)ηk
∣∣ ≤ LJαk∥ηk∥2pk

,(4.20)

then the Riemannian generalization of Zoutendijk’s theorem given by Theorem 2 in
[36] (Theorem 4.1 in [39]) holds, and Theorem 4.2 in [39] guarantees convergence of
the geometric conjugate gradient algorithm in the sense that

lim inf
k→∞

∥∥ grad J(Vk,Wk)
∥∥
(Vk,Wk)

= 0.(4.21)

In other words, the conjugate gradient algorithm will produce iterates with arbitrarily
small gradients, which may be used as a stopping condition. Fortunately, the Lipschitz
condition (4.20) is easily verified, and we obtain the following convergence result.

Theorem 4.5. Suppose that there is a compact subset Dc of the domain D (de-
fined in Proposition 3.2) such that, for every iteration k = 0, 1, 2, . . ., we have

γk(t) = exppk
(tηk) ∈ Dc ∀t ∈ [0, αk].(4.22)

Let ∇ denote the Riemannian connection on Gn,r×Gn,r with a metric given by (4.4).
Then the Lipschitz condition (4.20) holds with

LJ = max
(p,ξ)∈TM:

p∈Dc, ∥ξ∥p=1

∥∥(∇ξ grad J)(p)
∥∥
p
<∞,(4.23)

and the geometric conjugate gradient algorithm with Dai–Yuan coefficient (4.19) and
αk satisfying the Wolfe conditions (4.17) converges in the sense of (4.21).

Proof. See SM5.

The Lipschitz estimate in Theorem 4.5 also guarantees the convergence of other
geometric conjugate gradient algorithms such as the Riemannian Fletcher–Reeves
method with strengthened Wolfe conditions presented in [36].

Remark 4.6. As we discuss in SM5, it is always possible to find step sizes αk

that satisfy the Wolfe conditions and the assumption in Theorem 4.5. However,
guaranteeing that the step size produces a path contained in a predefined compact
set Dc requires modifying the line-search method. In practice, we did not find such
a modification necessary, and the simple bisection method in [15] was sufficient to
produce converging iterates in Algorithm 4.2.

5. Simple nonlinear system with an important low-energy feature. In
this section, we illustrate our method on a simple example system for which existing
approaches to nonlinear model reduction perform poorly. In particular, we consider
the system

ẋ1 = −x1 + 20x1x3 + u,

ẋ2 = −2x2 + 20x2x3 + u,

ẋ3 = −5x3 + u,

y = x1 + x2 + x3,

(5.1)D
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(a) training trajectories
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(b) error on testing trajectories

Fig. 1. In panel (a), we show the outputs generated by the FOM (5.1) and various two-
dimensional projection-based reduced-order models in response to impulses with magnitudes u0 = 0.5
and u0 = 1 at t = 0. The sample points used to construct the objective function (5.2) used to optimize
the projection operator are shown as black dots. In panel (b), we show the normalized square errors
of the reduced-order model predictions in response to 100 impulses at t = 0 whose magnitudes u0

were drawn uniformly at random from the interval [0, 1].

and we compare our method (TrOOP) with two-dimensional projection-based models
obtained using subspaces determined by POD, balanced truncation of the linearized
system, quadratic-bilinear (QB) balanced truncation [10], and the QB IRKA (QB-
IRKA) presented in [11]. The QB-balancing method had similar but slightly worse
performance than QB-IRKA, so we shall only show the results using QB-IRKA. We
confine our attention to nonlinear impulse responses with magnitudes u0 ∈ [0, 1].
These responses can be obtained by considering the output of (5.1) with u ≡ 0 and
known initial condition x(0) = u0(1, 1, 1). Two such responses with u0 = 0.5 and
u0 = 1 are shown in Figure 1(a).

The key feature of (5.1) is that the state x3 plays a very important role in the
dynamics of the states x1 and x2 while remaining small by comparison due to its
fast decay rate. In fact, for u0 > 1/5 we have ẏ(0) > 0, and the output experi-
ences transient growth due to the nonlinear interaction of x1 and x2 with x3. These
nonlinear interactions become dominant for larger u0 but are neglected completely
by model reduction techniques like balanced truncation that consider only the linear
part of (5.1). Figure 1(a) shows the result of such an approach, in which we obtain
a nonlinear reduced-order model by Petrov–Galerkin projection of (5.1) onto a two-
dimensional subspace determined by balanced truncation of the linearized system.
As shown in the figure, the resulting model overpredicts the transient growth by an
amount that increases with u0. Techniques such as QB-balancing and QB-IRKA ex-
tend the region of validity for the reduced-order models by considering second-order
terms in the Volterra series for the response, yet still have deteriorating accuracy with
increasing u0 due to the neglected higher-order terms.

On the other hand, a two-dimensional POD-based model retains the most ener-
getic states, which align closely with x1 and x2, and essentially ignores the important
low-energy state x3. Consequently, the POD-based model of (5.1) does not predict
any transient growth as shown in Figure 1(a).

In order to find a two-dimensional reduced-order model of (5.1) using TrOOP,
we collected the two impulse-response trajectories shown in Figure 1(a) and used
the L = 11 equally spaced samples shown for each trajectory to define the cost
function
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J(V,W ) =
∑

u0∈{0.5,1.0}

1∑L−1
l=0 (y|u0

(tl))2

L−1∑
l=0

(ŷ|u0(tl)− y|u0(tl))
2
+ γρ(V,W ),(5.2)

with γ = 10−3 (although we note that the results were not sensitive to the choice of γ).
The normalizing factor in the cost for each trajectory was used to penalize the error
relative to the average energy content of the trajectory rather than in an absolute sense
which would be dominated by the trajectory with u0 = 1. Starting from an initial
model formed by balanced truncation, the conjugate gradient algorithm described
above with Wolfe conditions defined by c1 = 0.01 and c2 = 0.1 achieves convergence
with a gradient magnitude smaller than 10−4 after fewer than 150 steps (depending on
the ODE solver). We note that initialization using POD fails to produce an accurate
model because the optimization converges to a local minimum of (5.2).

In Figure 1(a), we see that the resulting reduced-order model trajectories very
closely match the trajectories used to find the oblique projection. Moreover, we tested
the predictions of the reduced-order models on 100 impulse-response trajectories with
u0 drawn uniformly at random from the interval [0, 1]. The square output prediction
errors for each trajectory normalized by the average output energy of the FOM are
shown in Figure 1(b). We observe that the POD-based model is poor regardless
of the impulse magnitude u0, whereas Petrov–Galerkin projection onto subspaces
determined by linear balanced truncation performs well when u0 is very close to 0
but poorly when u0 is closer to 1. The projection subspaces obtained by QB-IRKA
(and QB-balancing) yield models that are accurate in a larger neighborhood of the
origin than balanced truncation of the linearized dynamics, yet still perform poorly
for large u0. On the other hand, the reduced-order model we found using TrOOP
produces very accurate predictions for all impulse-response magnitudes in the desired
range. This model also has excellent predictive performance with different input
signals, even though it was optimized using only two impulse responses. For instance,
Figure 2 shows the predictions of the reduced-order models in response to a sinusoidal
input u(t) = sin(t) with zero initial condition.

6. Reduction of a high-dimensional nonlinear fluid flow. In this section
we set out to develop reduced-order models capable of predicting the response of an
incompressible jet flow to disturbances in the proximity of the nozzle. We consider
the evolution of an axisymmetric jet flow over the spatial domain Ω = {(ξ, z) | ξ ∈
[0, Lξ] , z ∈ [0, Lz]}. Here, ξ denotes the radial direction, and z denotes the axial
direction. Velocities are nondimensionalized by the centerline velocity U0, lengths
by the jet diameter D0, and pressure by ρU2

0 , where ρ is the fluid density. Letting
q = (u, v) denote the (dimensionless) velocity vector with axial component u and
radial component v and letting p be the (dimensionless) pressure field, we may write
the governing equations in cylindrical coordinates as

0 5 10 15 20 25 30
0

25

50

75

100 FOM
POD
lin. bal.
QB-IRKA
TrOOP

y

t

Fig. 2. We show the responses of (5.1) and the reduced-order models to input u(t) = sin(t).
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∂u

∂t
= −u∂u

∂z
− v

∂u

∂ξ
− ∂p

∂z
+

1

Re

(
1

ξ

∂

∂ξ

(
ξ
∂u

∂ξ

)
+

∂2u

∂z2

)
,(6.1)

∂v

∂t
= −u∂v

∂z
− v

∂v

∂ξ
− ∂p

∂ξ
+

1

Re

(
1

ξ

∂

∂ξ

(
ξ
∂v

∂ξ

)
− v

ξ2
+

∂2v

∂z2

)
,(6.2)

∂u

∂z
+

1

ξ

∂

∂ξ
(ξv) = 0,(6.3)

where Re = U0D0/ν is the Reynolds number and ν is the kinematic viscosity of the
fluid. Throughout, we take Re = 1000. The algebraic constraint in formula (6.3) may
be used to eliminate pressure from formulas (6.1) and (6.2), as discussed in SM6. We
impose zero gradient boundary conditions on the velocity at the top boundary ξ = Lξ

and at the outflow boundary z = Lz, and we let the inflow velocity be

u(ξ, 0) =
1

2

(
1− tanh

[
1

4θ0

(
ξ − 1

ξ

)])
,(6.4)

where θ0 is a dimensionless thickness, which we fix at θ0 = 0.025. The equations of
motion are integrated in time using the fractional step method described in [34] in
conjunction with the second-order Adams–Bashforth multistep scheme. The spatial
discretization is performed on a fully staggered grid of size Nz ×Nξ = 250× 200 and
with Lz = 10 and Lξ = 4. If we let the state be composed of the axial and radial
velocities at the cell faces, then the state dimension for this flow is 2(Nz ×Nξ) = 105.
The solver has been validated against some of the results presented in [44], for which
we observed very good quantitative agreement. Throughout this section, the inner
product on the state space is given by

⟨f, g⟩ =
∫
Ω

f(ξ, z)T g(ξ, z) ξ d ξ d z.(6.5)

This may be transformed into a Euclidean inner product by scaling the elements of
the state space by

√
ξ. We take our observations, y, to be the full velocity field on

the spatial grid scaled by
√
ξ.

6.1. Results. For the described flow configuration, there exists a stable steady-
state solution, which we will denote Q. Any perturbation q′ about the steady-state
solution will grow while advecting downstream, and it will eventually leave the com-
putational domain through the outflow located at z = Lz. During the growth process,
nonlinear effects become dominant and lead to the formation of complicated vortical
structures. In this section we seek to develop a reduced-order model of the growth of
these disturbances in response to impulses that enter the radial momentum equation
(6.2) through a velocity perturbation localized near ξ = 1/2 and z = 1. In particular,
the perturbation has the form B(ξ, z)w(t), where

B(ξ, z) = exp

{
− (ξ − 1/2)2 + (z − 1)2

θ0

}
.(6.6)

We simulate the response of the flow to a given impulse w(t) = αδ(t), with α ∈ R, by
integrating the governing equations (6.1)–(6.3) with initial condition

q(0) = Q+ q′(0), where q′(0) = (0, Bα).(6.7)

Here we construct reduced-order models to capture the response of the flow to impulses
with −1.0 ≤ α ≤ 1.0 from the initial time t = 0 to a final time (t ≈ 30) when

D
ow

nl
oa

de
d 

11
/3

0/
25

 to
 1

88
.9

2.
13

6.
18

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMIZING REDUCED-ORDER MODELS A1697

all disturbances have left the computational domain through the outflow boundary
located at z = Lz.

We proceed as follows: we generate a training set of M = 14 trajectories cor-
responding to values α ∈ ±{0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, and from each trajectory
we observe L = 64 equally spaced snapshots of velocity perturbations about the base
flow Q. Let ym,l denote the lth velocity snapshot in the mth trajectory, and let ŷm,l

denote the corresponding prediction obtained by integrating the reduced-order model
from the initial condition q̂′m,0 = PV,W q′m,0. Letting Em = L−1

∑L−1
l=0 ∥ym,l∥2 denote

the average energy along the mth trajectory, we seek to minimize the cost function

J(V,W ) =
1

ML

M−1∑
m=0

1

Em

L−1∑
l=0

∥ŷm,l − ym,l∥2 + γρ(V,W ),(6.8)

where γ = 10−3. The optimization was carried out using Algorithm 4.2 with an r-
dimensional model obtained by POD of all available training snapshots as the initial
guess. As we will see below, models obtained using BPOD and QB-balancing experi-
enced blowup, which prevented us from using these methods to initialize TrOOP. The
integrals in Algorithm 4.1 were computed using Gauss–Legendre quadrature with two
quadrature points between adjacent FOM data points. Here, we train two models:
one with r = 30 and one with r = 50, where the first 30 POD modes accounted for
98.6% of the training energy and the first 50 accounted for 99.6% of the energy.

We compare the models obtained using TrOOP to projection-based models of
the same dimension using subspaces determined by POD, BPOD, and QB-balancing
on a set of M = 65 unseen impulse responses. For 50 of these, α was drawn uni-
formly at random from [−1.0, 1.0], while the remaining 15 were drawn uniformly
from [−0.1, 0.1]. The energy content of the testing set is shown in Figure 3(a).
Observe the range of behavior for different values of α, reflecting the strong non-
linearity of this flow. The BPOD model was obtained following the procedure dis-
cussed in [37], with a 30-dimensional output projection that accounted for more than
99.9% of the energy. Our implementation of the QB-balancing method is discussed in
SM7.

The performance of each model is shown in Figure 3(b), with the exception of
BPOD and QB-balancing with r = 50. The predictions from these models blew up

t

E
n
er
g
y
=

∥y
m
(t
)∥

2 |α|

(a) testing data

∥ŷ
m
(t
)
−

y
m
(t
)∥

2
/
E

m

t t t

(b) error on testing trajectories

Fig. 3. In panel (a) we show the time history of the energy of the impulse responses in the
training data set. In panel (b) we show the square error across all training trajectories for the
optimal reduced-order model and for the POD-based model with dimensions r = 30 and r = 50 and
for the BPOD-based model and for the QB-balancing model of dimension r = 30.
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for virtually all amplitudes α. Figure 3(b) shows that the POD/Galerkin models
accurately represent the initial growth of the perturbations at all amplitudes, but
they perform poorly at long times. The QB-balancing model exhibits large errors at
initial times, and it blows up for many of the testing trajectories with larger values
of α. The BPOD-based model performs very well for small amplitudes α, but it too
performs poorly or even blows up for larger values of α. By contrast, the models
obtained using TrOOP are accurate over the entire time-horizon at every amplitude
and capture the initial transient growth of the perturbations as well as the long-time
decay.

Snapshots extracted from the trajectories with α = 0.158 and α = −0.943 are,
respectively, shown in Figure 4 and Figure 5. Results are not shown for BPOD and
QB-balancing in Figure 5 because these models blew up after a few time steps at
the higher amplitude. At both amplitudes the optimized models correctly predict the

z

ξ
ξ

ξ
ξ

ξ
ξ

ξ

POD r = 50

TrOOP r = 50

POD r = 30

TrOOP r = 30

BPOD r = 30

QB bal. r = 30

FOM

(a) vorticity at time t = 12 and α = 0.158

z

ξ
ξ

ξ
ξ

ξ
ξ

ξ

POD r = 50

TrOOP r = 50

POD r = 30

TrOOP r = 30

BPOD r = 30

QB bal. r = 30

FOM

(b) vorticity at time t = 18 and α = 0.158

Fig. 4. In panel (a) we show a vorticity snapshot (i.e., ∇× (q′ +Q)) at time t = 12 from the
trajectory generated by the impulse with α = 0.158. In panel (b) we show the analogue of panel (a)
with t = 18 and α = 0.158. The color bar ranges from 0 (white) to approximately 9 (red).

z

ξ
ξ

ξ
ξ

ξ

POD r = 50

TrOOP r = 50

POD r = 30

TrOOP r = 30

FOM

(a) vorticity at time t = 12 and α = −0.943

z

ξ
ξ

ξ
ξ

ξ

POD r = 50

TrOOP r = 50

POD r = 30

TrOOP r = 30

FOM

(b) vorticity at time t = 18 and α = −0.943

Fig. 5. Analogue of Figure 4 except with α = −0.943. The BPOD and QB-balancing predictions
are not shown because they blew up after a few time steps.
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(a) forcing with −0.3B(r, z) cos(t/2)
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(b) forcing with −0.5B(r, z) cos(t/2)

Fig. 6. In panel (a) we show the energy of the response of the flow to a radial velocity input
w(r, z, t) = −βB(r, z) cos (t/2) with β = −0.3. Panel (b) is the analogue of panel (a) with β = −0.5.

location and strength of the vortical structures that form in response to the initial
impulse, while the other reduced-order models exhibit spurious vortical structures or
begin to lose predictive accuracy at long times.

The models found using TrOOP are also able to predict the response of the flow
to other types of input signals. For example, we consider a radial velocity input of
the form w(r, z, t) = −βB(r, z) cos (t/2) for values β = 0.3 and β = 0.5. The results
are shown in Figure 6(a) and Figure 6(b), where we plot the predicted energy of
the velocity field over time. For both amplitudes, our models correctly capture the
qualitative nature of the response of the flow, and the 50-dimensional model also
exhibits very good quantitative agreement. By contrast, the QB-balancing model
“blows up” at early times, both POD/Galerkin models blow up at later times, and
the BPOD model either exhibits extremely large transient growth at β = 0.3 or it
blows up for β = 0.5. It is worth mentioning that the 30-dimensional BPOD model
has excellent performance on the low-amplitude posttransient response.

6.2. Computational cost and considerations. Here, we provide a brief com-
parison of the computational costs of each method for the jet flow in terms of the
number of times an object resembling the right-hand side of the FOM is evaluated,
i.e., f(x, u), (∂f(x, u)/∂x)v, or (∂f(x, u)/∂x)T v acting on a single vector v ∈ Rn.
Such evaluations dominate the computational cost of each method we considered. We
recall that TrOOP assembles the reduced-order model at each line-search iteration us-
ing queries to f(x, u), while the gradient is computed using Algorithm 4.1 by querying
f(x, u) and (∂f(x, u)/∂x)T v at quadrature points along each trajectory. Since solv-
ing the Lyapunov equations for balanced truncation [33] and its QB extension [10]
were infeasible for our system with 105 states, we used BPOD [37] and an analogous
snapshot-based approximation for QB-balancing described in SM7 involving similar
queries. In fact, to the best of our knowledge, the QB-balancing algorithm has never
been applied to systems with a state dimension larger than ∼ 103. Table 1 summa-
rizes the total cost of each method, and Figure 7 shows the progress of the conjugate
gradient algorithm against the number of iterations and the total number of FOM-like
evaluations.

Table 1
We compare the number of FOM-like evaluations for each model-reduction technique on the jet

flow to a single simulation of the FOM from t = 0 to t = 30 using the time step ∆t = 5× 10−3 and
the second-order Adams–Bashforth method.

Method FOM sim. BPOD QB bal. TrOOP r = 30 TrOOP r = 50
FOM evals. 6× 103 2× 105 1.3× 106 2.3× 106 2.1× 106
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iterations

o
b
je
ct
iv
e

FOM-like evaluations
(×106)

Fig. 7. Values of the jet flow optimization objective (6.8) versus conjugate gradient iterations
(left) and FOM-like evaluations (right).

7. Conclusions. We have introduced a reduced-order modeling approach for
large-scale nonlinear dynamical systems based on optimizing oblique projections of
the governing equations to minimize prediction error over sampled trajectories. We
implemented a provably convergent geometric conjugate gradient algorithm in order
to optimize a regularized trajectory prediction error over the product of Grassmann
manifolds defining the projection operators. The method, referred to as TrOOP, is
compared to existing projection-based reduced-order modeling techniques, where the
projection subspaces are found using POD, balanced truncation, and techniques for
QB systems. We considered a simple three-dimensional system with an important
low-energy feature as well as a nonlinear axisymmetric jet flow with 105 state vari-
ables. In both cases, the models obtained using TrOOP vastly outperform the models
obtained using other methods in the highly nonlinear regimes far away from equilibria
while achieving comparable performance to the best alternatives near equilibria. The
algorithms were implemented in Python and run on a personal computer. Our code
that implements TrOOP is available at https://github.com/samotto1/TrOOP.

There are two key issues that we would like to address in future work. First,
the performance of TrOOP depends on the initial subspaces, which may be poor.
Second, chaotic dynamics do not admit accurate predictions over long time-horizons.
Preliminary experiments with the jet flow at higher Reynolds numbers indicate that it
may be helpful to break long trajectories into pieces during training and to increase the
length of the pieces as the model improves. It is also necessary to use a sufficiently
large collection of trajectories in order to sample the system’s behavior and avoid
overfitting. Based on algebraic considerations, the total number of sample data should
exceed the dimension 2nr−2r2 of the product of Grassmann manifolds over which we
optimize, where n is the state dimension and r is the dimension of the reduced-order
model. When a large number of trajectories is used, it may be advantageous to employ
a stochastic gradient descent algorithm [13, 41] with randomized “minibatches” of
trajectories.
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