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Abstract. Computing reduced-order models using non-intrusive methods is particularly attractive for systems
that are simulated using black-box solvers. However, obtaining accurate data-driven models can be
challenging, especially if the underlying systems exhibit large-amplitude transient growth. Although
these systems may evolve near a low-dimensional subspace that can be easily identified using stan-
dard techniques such as proper orthogonal decomposition (POD), computing accurate models often
requires projecting the state onto this subspace via a non-orthogonal projection. While appropriate
oblique projection operators can be computed using intrusive techniques that leverage the form of
the underlying governing equations, purely data-driven methods currently tend to achieve dimen-
sionality reduction via orthogonal projections, and this can lead to models with poor predictive
accuracy. In this paper, we address this issue by introducing a non-intrusive framework designed
to simultaneously identify oblique projection operators and reduced-order dynamics. In particu-
lar, given training trajectories and assuming reduced-order dynamics of polynomial form, we fit a
reduced-order model by solving an optimization problem over the product manifold of a Grassmann
manifold, a Stiefel manifold, and several linear spaces (as many as the tensors that define the low-
order dynamics). Furthermore, we show that the gradient of the cost function with respect to the
optimization parameters can be conveniently written in closed form, so that there is no need for auto-
matic differentiation. We compare our formulation with state-of-the-art methods on three examples:
a three-dimensional system of ordinary differential equations, the complex Ginzburg--Landau (CGL)
equation, and a two-dimensional lid-driven cavity flow at Reynolds number Re= 8300.
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1. Introduction. Computing reduced-order models (ROMs) of high-dimensional systems
is often necessary to perform several tasks, including accelerating expensive simulations, de-
veloping control strategies, and solving design optimization problems. Most model reduction
frameworks share the following key ingredients: a possibly nonlinear map from the high-
dimensional state space to a low-dimensional space (i.e., an encoder), a possibly nonlinear
map from the low-dimensional space to the original high-dimensional space (i.e., a decoder),
and reduced-order dynamics to evolve the reduced-order state. Here, we provide a brief review
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3053

of intrusive and non-intrusive methods where the reduced-order dynamics are continuous in
time and where the encoder and decoder define linear projection operators (i.e., the encoder
and decoder are linear maps, and the encoder is a left-inverse of the decoder).

Perhaps the most well known ROMs that fall within this category are the so-called linear-
projection Petrov--Galerkin models. These are obtained by (obliquely) projecting the full-order
dynamics onto a low-dimensional linear subspace. In particular, given a decoder \bfPhi (\bfPsi \intercal \bfPhi ) - 1

and an encoder \bfPsi \intercal , where \bfPhi and \bfPsi are tall rectangular matrices that define a projection
\BbbP = \bfPhi (\bfPsi \intercal \bfPhi ) - 1\bfPsi \intercal , the aforementioned linear subspace is given by the span of \bfPhi , and \bfPsi 
specifies the direction of projection. This is illustrated in Figure 1 in [32]. If \bfPhi =\bfPsi , then the
projection \BbbP is orthogonal and the model is known as a Galerkin model. In the simplest of
cases, a Galerkin model can be obtained by orthogonally projecting the dynamics onto the span
of the leading proper orthogonal decomposition (POD) modes of a representative training data
set. This procedure is ``weakly"" intrusive in the sense that it requires access to the governing
equations but not necessarily to the linearization and adjoint of the underlying nonlinear
dynamics. In the context of fluids, POD-Galerkin models have been used extensively for both
compressible and incompressible flows [31, 23, 2, 32]. However, these models may not perform
well in systems that exhibit large-amplitude transient growth. Examples of such systems in
fluid mechanics include boundary layers, mixing layers, jets, and high-shear flows in general [8].
The difficulty posed by these systems can often be traced back to the non-normal1 nature of
the underlying linear dynamics, which demands the use of carefully chosen oblique projections.
In linear systems, or nonlinear systems that evolve near a steady state, this problem can be
addressed using methods such as Balanced Truncation [22, 11, 39] or Balanced POD [30],
which produce oblique projection operators and corresponding Petrov--Galerkin models by
balancing the observability and reachability Gramians associated with the underlying linear
dynamics. Extensions and variants of Balanced Truncation and Balanced POD also exist for
quadratic-bilinear systems [4] and for systems that evolve in the proximity of time-periodic
orbits [38, 20, 27]. Beyond balancing, we find several other approaches from linear systems
theory, including \scrH 2 and \scrH \infty model reduction, where ROMs are obtained by minimizing the
\scrH 2 and \scrH \infty norms of the error between the full-order and reduced-order transfer functions
[37, 12]. As in the case of balancing, extensions of \scrH 2-optimal (and quasi-optimal) model
reduction were developed for quadratic-bilinear systems [3, 5]. For highly nonlinear systems
that lie outside the region of applicability of linear model reduction methods, one can turn
to recently developed methods such as Trajectory-based Optimization of Oblique Projections
(TrOOP) [25] and Covariance Balancing Reduction using Adjoint Snapshots (CoBRAS) [26].
TrOOP identifies optimal oblique projections for Petrov--Galerkin modeling by training against
trajectories generated by the full-order model, while CoBRAS identifies oblique projections
for model reduction by balancing the state and gradient covariances associated with the full-
order solution map. We shall see that our non-intrusive formulation is closely related to
TrOOP, so we will discuss the latter in more detail in section 2.5. All these Petrov--Galerkin
methods are intrusive: not only do they require access to the full-order dynamics but also to

1A non-normal linear operator is one whose right eigenvectors are not mutually orthogonal, and, in the
context of fluids, non-normality is due to the presence of the advective transport terms in the Navier--Stokes
equation.
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3054 A. PADOVAN, B. VOLLMER, AND D. J. BODONY

their linearization about steady or time-varying base flows and to the adjoint of the linearized
dynamics. Thus, they are not easily applicable to systems that are simulated using black-box
solvers.

Among existing techniques to obtain data-driven ROMs with continuous-time dynamics
on linear subspaces, the most well-known is perhaps Operator Inference [28, 19]. Operator
Inference fits a model to data by minimizing the difference between (usually polynomial)
reduced-order dynamics and the projection of the time-derivative of the full-order state onto
a low-dimensional subspace. Usually, this subspace is defined by the span of POD modes, and
the high-dimensional data are projected orthogonally onto it. While Operator Inference has
been shown to work well for systems that evolve in close proximity of an attractor (see, e.g.,
[29]), it may suffer from the aforementioned drawbacks of orthogonal projections when applied
to highly non-normal systems evolving far away from an attractor (e.g., during transients).
This will become apparent in the examples sections. In the interest of completeness, it is
worth mentioning that the Operator Inference framework is not limited to linear spaces. In
fact, Operator Inference ROMs were recently computed after orthogonally projecting the
data onto quadratic manifolds [14, 6], and extensions of the Operator Inference formulation
were developed to preserve the underlying structure or symmetries of the full-order model
[35, 15, 18]. We conclude our brief review by acknowledging that there exist several other non-
intrusive model reduction frameworks in the literature (e.g., discrete-time formulations such as
dynamic mode decomposition (DMD), autoencoders parameterized via neural networks, and
many others), and we will mention those that are more closely connected with our formulation
as needed throughout the manuscript.

In this paper, we introduce a novel non-intrusive framework to address the problems associ-
ated with orthogonal projections. In particular, given training trajectories from the full-order
model, we fit an optimal low-order model by simultaneously seeking reduced-order dynamics
\bff r and oblique projection operators \BbbP defined by a linear encoder \bfPsi \intercal and a linear decoder
\bfPhi (\bfPsi \intercal \bfPhi ) - 1. We shall see that the optimization parameters are the subspace V =Range(\bfPhi ),
which lives naturally on the Grassmann manifold, the matrix \bfPsi , which can be taken to be
an element of the orthogonal Stiefel manifold, and the parameters that define the reduced-
order dynamics (e.g., reduced-order tensors if the dynamics are taken to be polynomial).
Furthermore, if we constrain the reduced-order dynamics \bff r to be of a form that lends itself to
straightforward differentiation (e.g., polynomial), we show that the gradient of the cost func-
tion with respect to the optimization parameters can be written in closed form. This is quite
convenient because it bypasses the need for automatic differentiation and it allows for faster
training. We test our formulation on three different examples: a simple system governed by
three ordinary differential equations, the complex Ginzburg--Landau (CGL) equation, and the
two-dimensional incompressible lid-driven cavity flow at Reynolds number Re= 8300. On all
three examples, we compare our framework with Operator Inference and POD-Galerkin. In
the first two examples, we also compare with TrOOP, which has been shown to give very accu-
rate Petrov--Galerkin models in several examples, including highly non-normal and nonlinear
jets [25, 26]. On all three examples, our models exhibit better performance than Operator
Inference and POD-Galerkin models, and in the first two examples we obtain models with
predictive accuracy very close to that of the intrusive TrOOP formulation.
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3055

2. Mathematical formulation. Throughout this section, we consider a general nonlinear
system with dynamics defined by

d\bfx 

dt
= \bff (\bfx ,\bfu ), \bfx (0) = \bfx 0,

\bfy = \bfh (\bfx ),
(2.1)

where \bfx \in \BbbR n is the state vector, \bfx 0 is the initial condition, \bfu \in \BbbR m is the control input, and
\bfy \in \BbbR p is the measured output. Since our model reduction procedure draws inspiration from
the form of Petrov--Galerkin ROMs, we begin by providing a brief review of the latter. We
then introduce our framework in section 2.2.

2.1. Petrov--Galerkin models. As discussed in the introduction, Petrov--Galerkin ROMs
are a class of models obtained by constraining the full-order dynamics in (2.1) to a linear
subspace of \BbbR n. While Petrov--Galerkin models can also be obtained via nonlinear projection
onto curved manifolds [24], here we constrain our attention to the more common case of linear
projections. Given rank-r matrices \bfPhi \in \BbbR n\times r and \bfPsi \in \BbbR n\times r that define an oblique projection
\BbbP =\bfPhi (\bfPsi \intercal \bfPhi ) - 1\bfPsi \intercal , the corresponding Petrov--Galerkin model for (2.1) is given by

d\^\bfx 

dt
= \BbbP \bff (\BbbP \^\bfx ,\bfu ) , \^\bfx (0) = \BbbP \bfx 0,

\^\bfy = \bfh (\BbbP \^\bfx ) ,
(2.2)

where \^\bfx lies in the range of \BbbP for all times. In the special case of \bfPsi =\bfPhi , the projection \BbbP is
orthogonal and the model (2.2) is referred to as a Galerkin model. While the state \^\bfx \in \BbbR n is
an n-dimensional vector (i.e., the same size of the original state \bfx ), the dynamics (2.2) can be
realized by an equivalent r-dimensional system

d\^\bfz 

dt
=\bfPsi \intercal \bff 

\Bigl( 
\bfPhi (\bfPsi \intercal \bfPhi ) - 1 \^\bfz ,\bfu 

\Bigr) 
, \^\bfz (0) =\bfPsi \intercal \bfx 0,

\^\bfy = \bfh 
\Bigl( 
\bfPhi (\bfPsi \intercal \bfPhi ) - 1 \^\bfz 

\Bigr) 
,

(2.3)

where the state vector \^\bfz =\bfPsi \intercal \^\bfx has dimension r. The primary challenge associated with com-
puting accurate projection-based ROMs lies in identifying matrices \bfPhi and \bfPsi that define ap-
propriate projections \BbbP . While there exist several methods to address this challenge, these are
often intrusive in the sense that they require access to the linearization of (2.1) and its adjoint
[30, 25, 26]. In the next section, we present a non-intrusive model reduction formulation by
allowing for the reduced-order dynamics to be independent of the full-order right-hand side \bff .

2.2. Non-intrusive optimization of projection operators and reduced-order dynamics.
Here, we consider ROMs of the form

G(\bfPhi ,\bfPsi ,\^\bff r) =

\left\{   
d\^\bfz 

dt
= \bff r (\^\bfz ,\bfu ) , \^\bfz (0) =\bfPsi \intercal \bfx 0,

\^\bfy = \bfh 
\Bigl( 
\bfPhi (\bfPsi \intercal \bfPhi ) - 1 \^\bfz 

\Bigr) 
.

(2.4)

It is instructive to observe that if \bff r(\^\bfz ,\bfu ) = \bfPsi \intercal \bff (\bfPhi (\bfPsi \intercal \bfPhi ) - 1\^\bfz ,\bfu ), then (2.4) is the exact
analogue of the Petrov--Galerkin ROM in (2.3). Instead, we let \bff r be a general function of the
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3056 A. PADOVAN, B. VOLLMER, AND D. J. BODONY

reduced-order state \^\bfz and of the input \bfu . So, while Petrov--Galerkin models are fully defined by
(the span of) the matrices \bfPhi and \bfPsi that define a projection onto a low-dimensional subspace,
here we have additional degrees of freedom in the choice of the reduced-order dynamics. We
shall see momentarily that this additional freedom allows us to proceed non-intrusively.

Within our framework, we seek ROMs of the form of (2.4) by minimizing the error be-
tween ground-truth observations \bfy coming from (2.1) and the predicted observations \^\bfy given
by (2.4). In order to convert this task into an appropriate optimization problem, it is useful
to first identify the symmetries and constraints that are present in (2.4). We begin by ob-
serving that the system G in (2.4) is invariant with respect to a rotation and scaling of the
basis matrix \bfPhi . In fact, G(\bfPhi \bfR ,\bfPsi , \bff r) =G(\bfPhi ,\bfPsi , \bff r) for any invertible matrix \bfR of size r\times r.
It follows that the reduced-order system defined by (2.4) is a function of the r-dimensional
subspace V = Range(\bfPhi ), rather than of the matrix representative \bfPhi itself. In the mathe-
matical statement of the problem, we will make use of this symmetry and leverage the fact
that r-dimensional subspaces of \BbbR n are elements of the Grassmann manifold \scrG n,r. An anal-
ogous type of symmetry does not hold for \bfPsi . In fact, it can be easily verified that there
exist invertible matrices \bfS such that G(\bfPhi ,\bfPsi \bfS , \bff r) \not = G(\bfPhi ,\bfPsi , \bff r). While (2.4) does not enjoy
any \bfPsi -symmetries, we still require \bfPsi to have full column rank (otherwise, the product \bfPsi \intercal \bfPhi 
would be rank deficient). It is therefore natural to constrain \bfPsi to the Stiefel manifold Sn,r of
orthonormal (and, hence, full-rank) n\times r matrices. Finally, in order to write an optimization
problem where the gradient of the cost function with respect to all the parameters can be
obtained in closed form, it is convenient to constrain the reduced-order dynamics \bff r to a form
that lends itself to straightforward differentiation. Throughout this paper, we will let \bff r be a
polynomial function of the reduced-order state \^\bfz and of the input \bfu as follows

\bff r =\bfA r\^\bfz +\bfB r\bfu +\bfH r : \^\bfz \^\bfz 
\intercal \underbrace{}  \underbrace{}  

:=\bff r

+\bfL r : \^\bfz \bfu 
\intercal + \cdot \cdot \cdot .(2.5)

Here, capital letters denote reduced-order tensors that lie naturally on linear manifolds of
appropriate dimension (e.g., \bfA r \in \BbbR r\times r, \bfB r \in \BbbR r\times m, and \bfH r \in \BbbR r\times r\times r). In the interest of a
more concise description of the mathematical formulation, we take \bff r = \bff r (see the definition
of \bff r in the underbrace of (2.5)). Higher-order polynomial dynamics can be considered with
minimal modification.

We are now ready to state the optimization problem that will give us an optimal ROM of
the form of (2.4). Given outputs \bfy (ti) sampled at times ti along a trajectory generated from
the full-order system (2.1), we seek a solution to

min
(V,\bfPsi ,\bfA r,\bfH r,\bfB r)\in \scrM 

J =

N - 1\sum 
i=0

\| \bfy (ti) - \^\bfy (ti)\| 2

subject to
d\^\bfz 

dt
= \bff r(\^\bfz ,\bfu ), \^\bfz (t0) =\bfPsi \intercal \bfx (t0),

\^\bfy = \bfh 
\Bigl( 
\bfPhi (\bfPsi \intercal \bfPhi ) - 1 \^\bfz 

\Bigr) 
,

V =Range (\bfPhi ) ,

(2.6)

where \scrM = \scrG n,r \times Sn,r \times \BbbR r\times r \times \BbbR r\times r\times r \times \BbbR r\times m is the product manifold that defines our
optimization domain.
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3057

2.3. Gradient-based optimization on \bfscrM . In order to solve the optimization problem
(2.6) using a gradient-based algorithm, it is convenient to view \scrM as a submanifold of an
ambient-space manifold \scrM endowed with a Riemannian metric. We first define \scrM for our
specific case, and then we discuss the Riemannian metric.

Since \scrM is a product manifold whose topology is the product topology of its individual
components, the ambient-space manifold \scrM can also be defined componentwise. Following
[1], we view the Stiefel manifold as an embedded submanifold of the vector space \BbbR n\times r and the
Grassmann manifold \scrG n,r as a quotient manifold of the non-orthogonal Stiefel manifold \BbbR n\times r

\ast 
(which is the manifold of rank-r, but non-necessarily orthonormal, matrices of size n \times r).
The manifolds \BbbR r\times r, \BbbR r\times r\times r, and \BbbR r\times m are vector spaces that do not require any special
treatment, so\scrM may finally be defined as

\scrM =\BbbR n\times r
\ast \times \BbbR n\times r \times \BbbR r\times r \times \BbbR r\times r\times r \times \BbbR r\times m.(2.7)

In order to define the gradient of the cost function with respect to the parameters, we now
endow the ambient-space manifold with a Riemannian metric, which will then be inherited
by the optimization manifold \scrM . Formally, a Riemannian metric g\scrM is a smooth family of
inner products g\scrM p defined on the tangent spaces of the manifold\scrM ,

g\scrM p : \scrT p\scrM \times \scrT p\scrM \rightarrow \BbbR ,(2.8)

where \scrT p\scrM denotes the tangent space of\scrM at a point p\in \scrM [1]. The gradient \xi of the cost
function at p\in \scrM is then defined as the element of the tangent space \scrT p\scrM that satisfies

DJ [\eta ] = g\scrM p (\xi , \eta ) \forall \eta \in \scrT \scrM 
p ,(2.9)

where DJ [\eta ] is the directional derivative. A metric for a product manifold can be defined as
the sum of the component metrics, so we can proceed componentwise as before. The metric
for the Stiefel manifold Sn,r can be defined as

g
Sn,r

\bfPsi (\xi , \eta ) =Tr (\xi \intercal \eta ) , \xi , \eta \in \scrT \bfPsi Sn,r,(2.10)

which is the Euclidean metric inherited from the ambient space \BbbR n\times r [1] and where Tr denotes
the trace. A metric for the Grassmann manifold can be defined analogously, albeit paying
attention to the fact that the Grassmannian is an abstract manifold with non-unique matrix
representatives. In particular, given the ambient space metric

g
\BbbR n\times r

\ast 
\bfPhi (\xi , \eta ) =Tr

\Bigl( 
(\bfPhi \intercal \bfPhi ) - 1 \xi \intercal \eta 

\Bigr) 
, \xi , \eta \in \scrT \bfPhi \BbbR n\times r

\ast ,(2.11)

we let the metric on \scrG n,r be defined as

g
\scrG n,r

V (\xi , \eta ) = g
\BbbR n\times r

\ast 
\bfPhi 

\bigl( 
\xi \bfPhi , \eta \bfPhi 

\bigr) 
, \xi , \eta \in \scrT V , Range (\bfPhi ) = V.(2.12)

It is worth observing that (2.12) is not yet suited for computation, since there exists an infinite
number of elements \xi \bfPhi and \eta \bfPhi of \scrT \bfPhi \BbbR n\times r

\ast that satisfy the equality. The ambiguity is resolved
by requiring \xi \bfPhi and \eta \bfPhi to lie on the horizontal space, which is a subspace of \scrT \bfPhi \BbbR n\times r

\ast where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3058 A. PADOVAN, B. VOLLMER, AND D. J. BODONY

one may identify unique \xi \bfPhi and \eta \bfPhi that satisfy (2.12). This unique vector \bfitxi \bfPhi is known as
the horizontal lift of \bfitxi at \bfPhi . A rigorous characterization of the horizontal space is provided
in Chapter 3 of [1], and the specific case of the Grassmann manifold is considered in Example
3.6.4 in the same reference. Finally, for the linear manifolds in the Cartesian product of\scrM ,
we adopt the Euclidean metric (i.e., the usual tensor dot product).

Now that we have defined the ambient-space manifold \scrM and metrics on \scrM , we can
approach the computation of the gradient of the cost function in terms of ambient-space
matrix-valued objects, rather than abstract elements of the optimization manifold \scrM . In
order to do so, we invoke the ``canonical projection"" [1]

\pi : \widetilde \scrM \rightarrow \scrM : (\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r) \mapsto \rightarrow (Range (\bfPhi ) ,\bfPsi ,\bfA r,\bfH r,\bfB r) ,(2.13)

where \widetilde \scrM =\BbbR n\times r
\ast \times Stn,r \times \BbbR r\times r \times \BbbR r\times r\times r \times \BbbR r\times m. Then, given our cost function J :\scrM \rightarrow \BbbR ,

for any point (V,\bfPsi ,\bfA r,\bfH r,\bfB r)\in \scrM we have

J(V,\bfPsi ,\bfA r,\bfH r,\bfB r) = J (\pi (\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r)) = J (\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r) ,(2.14)

where (\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r) \in \widetilde \scrM and V = Range(\bfPhi ). If we view J :\scrM \rightarrow \BbbR as a function that
sends elements of the ambient space to the reals, then (2.14) implies that J on \scrM is equal

to the restriction of J to \widetilde \scrM . This restriction ensures that the second argument of J is an
element of the Stiefel manifold (as opposed to a generic element of \BbbR n\times r). We henceforth refer
to J as the ambient-space cost function. It follows from standard results (see equations (3.37)
and (3.39) in [1]) that\bigl( 

\nabla V J\bfPhi ,\nabla \bfPsi J,\nabla \bfA r
J,\nabla \bfH r

J,\nabla \bfB r
J
\bigr) 
=
\bigl( 
\nabla \bfPhi J,\BbbP \bfPsi \nabla \bfPsi J,\nabla \bfA r

J,\nabla \bfH r
J,\nabla \bfB r

J
\bigr) 
,(2.15)

where the gradient of J is evaluated at (\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r) \in \widetilde \scrM , and the gradient of J is
evaluated at (V,\bfPsi ,\bfA r,\bfH r,\bfB r)\in \scrM with V =Range(\bfPhi ). Here, \nabla V J\bfPhi denotes the horizontal
lift of \nabla V J at \bfPhi , \BbbP \bfPsi denotes the projection onto the tangent space of Stn,r at \bfPsi (see Example
3.6.2 in [1]), and we remark that \nabla \bfPsi J is an element of the tangent space of \BbbR n\times r at \bfPsi . In
summary, the equation above states that the gradient of the cost function with respect to the
abstract optimization parameters can be computed in terms of the gradient of the ambient-
space cost function. Conveniently, our model reduction formulation allows for the ambient-
space gradient to be computed in closed form, and this result is stated in the proposition below.
Importantly, we shall see that the computation of the gradient does not require querying
the full-order model (2.1). That is, the gradient can be computed non-intrusively. Once the
ambient-space gradient is available, the gradient with respect to the optimization parameters is
computed using (2.15) by libraries such as Pymanopt [36] in Python or Manopt [7] in MATLAB.

Proposition 2.1 (ambient-space gradient). Let problem (2.6) be written as an equivalent
unconstrained optimization problem with ambient-space Lagrangian L :\scrM \rightarrow \BbbR defined as

L(\bfPhi ,\bfPsi ,\bfA r,\bfH r,\bfB r) =

N - 1\sum 
i=0

\biggl\{ 
J i +

\int ti

t0

\bfitlambda \intercal 
i

\biggl( 
d\^\bfz 

dt
 - \bfA r\^\bfz  - \bfH r : \^\bfz \^\bfz 

\intercal  - \bfB r\bfu 

\biggr) 
dt

+\bfitlambda i(t0)
\intercal 
\bigl( 
\^\bfz (t0) - \bfPsi 

\intercal 
\bfx (t0)

\bigr) \biggr\} 
,

(2.16)
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3059

where J i = \| \bfy (ti) - \bfh (\bfPhi (\bfPsi 
\intercal 
\bfPhi ) - 1\^\bfz (ti))\| 2 and \bfitlambda i(t) \in \BbbR r is the ith Lagrange multiplier with

t \in [t0, ti]. Defining \bfe (ti) := \bfy (ti) - \bfh (\bfPhi (\bfPsi 
\intercal 
\bfPhi ) - 1\^\bfz (ti)) and \bfC j,k := \partial \bfh j/\partial \bfx k, the gradients of

the ambient-space Lagrangian with respect to its parameters are given below:

\nabla \bfPhi L=

\Biggl\{ 
 - 2

N - 1\sum 
i=0

\Bigl( 
\bfI  - \bfPsi 

\bigl( 
\bfPhi \intercal \bfPsi 

\bigr)  - 1
\bfPhi \intercal 

\Bigr) 
\bfC (ti)

\intercal \bfe (ti)\^\bfz (ti)
\intercal 
\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1

\Biggr\} 
(\bfPhi \intercal \bfPhi ) ,(2.17)

\nabla \bfPsi L=

N - 1\sum 
i=0

\Bigl( 
2\bfPhi 

\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1

\^\bfz (ti)\bfe (ti)
\intercal \bfC (ti)\bfPhi 

\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1  - \bfx (t0)\bfitlambda i(t0)

\intercal 
\Bigr) 
,(2.18)

\nabla \bfA r
L= - 

N - 1\sum 
i=0

\int ti

t0

\bfitlambda i\^\bfz 
\intercal dt,(2.19)

\nabla \bfH r
L= - 

N - 1\sum 
i=0

\int ti

t0

\bfitlambda i \otimes \^\bfz \otimes \^\bfz dt,(2.20)

\nabla \bfB r
L= - 

N - 1\sum 
i=0

\int ti

t0

\bfitlambda i\bfu 
\intercal dt,(2.21)

where the Lagrange multiplier \bfitlambda i(t) satisfies the reduced-order adjoint equation

 - d\bfitlambda i

dt
=
\bigl[ 
\partial \^\bfz \bff r(\^\bfz )

\bigr] \intercal 
\bfitlambda i, \bfitlambda i(ti) = 2

\bigl( 
\bfPhi \intercal \bfPsi 

\bigr)  - 1
\bfPhi \intercal \bfC (ti)

\intercal \bfe (ti), t\in [t0, ti].(2.22)

Proof. The proof relies on calculus of variations. At a local minimum p\in \scrM , the following
must hold for every vector \xi \in \scrT p\scrM :

g\scrM p
\bigl( 
\nabla pL, \xi 

\bigr) 
=DpL[\xi ] = \partial pL[\xi ] + \partial \^\bfz L \cdot Dp\^\bfz [\xi ] +

N - 1\sum 
i=0

\bigl( 
\partial \bfitlambda i

L \cdot Dp\bfitlambda i[\xi ]
\bigr) 
= 0,(2.23)

where g\scrM p denotes the ambient-space metric on\scrM at p (which we have defined componentwise

earlier in section 2.3). By enforcing \partial \^\bfz L[\bfiteta ] = 0 for all \bfiteta , the equality above reduces to

g\scrM p
\bigl( 
\nabla pL, \xi 

\bigr) 
= \partial pL[\xi ] = 0,(2.24)

since \partial \bfitlambda i
L = 0 for all i by virtue of the fact that \bfitlambda i is a Lagrange multiplier. We begin by

showing that the reduced-order adjoint equation (2.22) enforces \partial \^\bfz L[\bfiteta ] = 0 for all \bfiteta . Given
the ambient-space Lagrangian L, we have

\partial \^\bfz L[\bfiteta ] =

N - 1\sum 
i=0

\biggl\{ 
 - 2\bfe (ti)

\intercal \bfC (ti)\bfPhi 
\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1

\bfiteta (ti) +\bfitlambda \intercal 
i \bfiteta 

\bigm| \bigm| \bigm| \bigm| ti
t0

 - 
\int ti

t0

\biggl( 
d\bfitlambda \intercal 

i

dt
+\bfitlambda \intercal 

i

\bigl[ 
\partial \^\bfz \bff r(\^\bfz )

\bigr] \biggr) 
\bfiteta dt

+\bfitlambda i(t0)
\intercal \bfiteta (t0)

\biggr\} 
= 0,

(2.25)
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3060 A. PADOVAN, B. VOLLMER, AND D. J. BODONY

where we have used integration by parts on the time-derivative term. For each i > 0, the
terms \bfitlambda i(t0)

\intercal \bfiteta (t0) cancel out and the summand vanishes thanks to (2.22). Similarly, when
i = 0, the second and third terms in the sum vanish and the summand is equal to zero for
\bfitlambda 0(t0) = 2(\bfPhi \intercal \bfPsi ) - 1\bfPhi \intercal \bfC (t0)

\intercal \bfe (t0). We now derive the gradient of L with respect to \bfPhi . The
partial derivative of L with respect to \bfPhi in the direction of \bfitxi is given by

\partial \bfPhi L[\bfitxi ] = - 2
N - 1\sum 
i=0

\bfe (ti)
\intercal \bfC (ti)

\Bigl( 
\bfitxi 
\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1  - \bfPhi 

\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1

\bfPsi 
\intercal 
\bfitxi 
\bigl( 
\bfPsi 

\intercal 
\bfPhi 
\bigr)  - 1

\Bigr) 
\^\bfz (ti),(2.26)

where we have used the identity D\bfPhi (\bfPsi 
\intercal 
\bfPhi ) - 1[\bfitxi ] = - (\bfPsi \intercal 

\bfPhi ) - 1\bfPsi 
\intercal 
\bfitxi (\bfPsi 

\intercal 
\bfPhi ) - 1. Using (2.24) and

recalling the definition of the ambient-space metric on \BbbR n\times r
\ast (2.11), we recover the gradient

in (2.17). The other gradients can be obtained similarly, and the proof is concluded.

Another ingredient that is necessary for gradient-based manifold optimization is the con-
cept of a retraction. This is a map Rp : \scrT p\scrM \rightarrow \scrM that satisfies Rp(0) = p andDRp(0) = I\scrT p\scrM ,
where I\scrT p\scrM is the identity map on the tangent space \scrT p\scrM [1]. The use of this map allows
us to generalize the concept of moving in the direction of the gradient on a nonlinear man-
ifold: for instance, given a point p \in \scrM and the gradient \xi \in \scrT p\scrM of a function f defined
on\scrM , the next iterate in the direction of the gradient is given by Rp(p - \alpha \xi ) \in \scrM , where \alpha 
is some learning rate. In other words, the retraction allows us to guarantee that all iterates
generated by a gradient flow lie on the manifold. Valid retractions for both the Stiefel and
the Grassmann manifolds are given by the QR decomposition (see Examples 4.1.3 and 4.1.5
in [1]), while for linear manifolds the retraction is simply the identity map. Last, we point out
that second-order gradient-based algorithms (e.g., conjugate gradient) require the concept of
vector transport. This is described thoroughly in section 8.1 of [1]. Gradient-based algorithms
on nonlinear manifolds are well understood and readily available in libraries such as Pymanopt
[36] and Manopt [7]. Metrics, retractions, and vector transports are conveniently handled by
these packages, and a user simply needs to provide routines to evaluate the cost function and
the ambient-space gradient provided in Proposition 2.1.

2.4. Computational considerations. In this subsection, we discuss the efficient computa-
tion of the ambient-space gradient presented in Proposition 2.1. We then provide an algorithm
and estimate of the computational cost.

In order to efficiently calculate the gradient, it is useful to manipulate the expressions
in (2.19)--(2.21) into a form that is more suitable for computation. In particular, since the
integrands in (2.19)--(2.21) are linear in \bfitlambda i, we can write, e.g.,

N - 1\sum 
i=0

\int ti

t0

\bfitlambda i(t)\^\bfz (t)
\intercal dt=

N - 1\sum 
i=1

\int ti

ti - 1

\bfitxi i(t)\^\bfz (t)
\intercal dt, \bfitxi i(t) =

N - 1\sum 
j=i

\bfitlambda j(t),(2.27)

where \bfitxi i(t) may be understood as a cumulative adjoint variable that can be computed by
time-stepping the adjoint equation (2.22) backward in time from tN - 1 to t0. Then, ac-
cording to the equation above, the gradients in (2.19)--(2.21) can be conveniently computed
as a sum of integrals over short temporal intervals [ti - 1, ti], as opposed to a sum of inte-
grals over temporal intervals [t0, ti] of increasing length. Having defined \bfitxi i(t), the term
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3061

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone . Compute ambient-space gradient in Proposition 2.1.

\bfI \bfn \bfp \bfu \bft : Training data \{ \bfy (ti)\} N - 1
i=0 , initial condition \bfx (0) of the full-order model, input \bfu (t),

and a point (V,\bfPsi ,\bfA r,\bfH r,\bfB r)\in \scrM , with some matrix representative \bfPhi such that
Range(\bfPhi ) = V .

\bfO \bfu \bft \bfp \bfu \bft : Ambient-space gradients (2.17)--(2.21) in Proposition 2.1

1: Initialize arrays to store \nabla \bfPhi L, \nabla \bfPsi L, \nabla \bfA r
L, \nabla \bfH r

L, and \nabla \bfB r
L

2: Compute the ROM solution \^\bfz (t) with initial condition \bfPsi \intercal \bfx (0) and external input \bfu (t)
3: Store values \^\bfz (ti) (with i\in \{ 0,1, . . . ,N  - 1\} ), and then compute \bfe (ti) and \bfC (ti) defined

in Proposition 2.1
4: \bff \bfo \bfr i\in \{ N  - 1,N  - 2, . . . ,1\} \bfd \bfo 
5: Update \nabla \bfPhi L\leftarrow \nabla \bfPhi L - 2(\bfI  - \bfPsi (\bfPhi \intercal \bfPsi ) - 1\bfPhi \intercal )\bfC (ti)

\intercal \bfe (ti)\^\bfz (ti)
\intercal (\bfPsi \intercal \bfPhi ) - 1(\bfPhi \intercal \bfPhi )

6: Update \nabla \bfPsi L\leftarrow \nabla \bfPsi L+ 2\bfPhi (\bfPsi \intercal \bfPhi ) - 1\^\bfz (ti)\bfe (ti)
\intercal \bfC (ti)\bfPhi (\bfPsi \intercal \bfPhi ) - 1

7: Compute \bfitxi i(t) (see (2.27)) for t\in [ti - 1, ti] by integrating the adjoint equation (2.22)
backward in time with final condition \bfitxi i(ti) = \bfitxi i+1(ti) + 2(\bfPhi \intercal \bfPsi ) - 1\bfPhi \intercal \bfC (ti)

\intercal \bfe (ti)

8: Update \nabla \bfA r
L\leftarrow \nabla \bfA r

L - 
\int ti
ti - 1

\bfitxi i(t)\^\bfz (t)
\intercal dt using, e.g., Gaussian quadrature

9: Update \nabla \bfH r
L\leftarrow \nabla \bfH r

L - 
\int ti
ti - 1

\bfitxi i(t)\otimes \^\bfz (t)\otimes \^\bfz (t)dt

10: Update \nabla \bfB r
L\leftarrow \nabla \bfB r

L - 
\int ti
ti - 1

\bfitxi i(t)\bfu (t)
\intercal dt

11: \bfe \bfn \bfd \bff \bfo \bfr 
12: Set \bfitxi 0(t0)\leftarrow \bfitxi 1(t0) + 2(\bfPhi \intercal \bfPsi ) - 1\bfPhi \intercal \bfC (t0)

\intercal \bfe (t0)

13: Update \nabla \bfPhi L\leftarrow \nabla \bfPhi L - 2(\bfI  - \bfPsi (\bfPhi \intercal \bfPsi ) - 1\bfPhi \intercal )\bfC (t0)
\intercal \bfe (t0)\^\bfz (t0)

\intercal (\bfPsi \intercal \bfPhi ) - 1

14: Update \nabla \bfPsi L\leftarrow \nabla \bfPsi L+ 2\bfPhi (\bfPsi \intercal \bfPhi ) - 1\^\bfz (t0)\bfe (t0)
\intercal \bfC (t0)

\intercal \bfPhi (\bfPsi \intercal \bfPhi ) - 1  - \bfx (t0)\bfitxi 0(t0)
\intercal 

\sum N - 1
i=0 \bfx (t0)\bfitlambda i(t0)

\intercal = \bfx (t0)\bfitxi 0(t0)
\intercal in (2.18) can also be evaluated efficiently. These details

are illustrated in Algorithm 2.1.
As far as computational cost is concerned, the algorithm scales with the number of snap-

shots N along a training trajectory, the ROM dimension r, the polynomial order of the ROM
dynamics p, the size of the full-order state n, the number of time steps nt to integrate the ROM
from time ti to ti+1, and the number of quadrature points nq used to estimate the temporal
integrals. Given the presence of a for loop with N  - 1 iterations (line 4 in the algorithm), the
overall cost of is O(Nc), where c is the cost associated with each for loop iteration i. The
major contributors to the latter are the presence of matrix-vector products involving \bfPhi and
\bfPsi (which we recall being matrices of size n\times r), the need to integrate the reduced-order ad-
joint dynamics backward in time (line 7 in the algorithm), and the evaluation of the integrals
involving r-dimensional tensor products (see, e.g., line 9). The cost of matrix-vector products
involving \bfPhi and \bfPsi is O(nr), the cost associated with integrating the adjoint equations is
O(ntr

p+1), where nt is the number of time steps taken from ti to ti+1, and the evaluation
of the integrals scales as O(nqr

p+1), where nq is the number of quadrature points. Usually,
nq\ll nt (this is the case if we use high-order Gaussian quadrature), so an estimate of the cost
per for-loop iteration is given by O(nr + ntr

p+1). In very high dimensional systems where
n is larger than O(ntr

p), the cost per iteration is dominated by the matrix-vector products
involving \bfPhi and \bfPsi ; otherwise, it is dominated by the ROM time stepper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/3

0/
25

 to
 1

88
.9

2.
13

6.
18

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



3062 A. PADOVAN, B. VOLLMER, AND D. J. BODONY

2.5. Connection with existing methods. While our model reduction framework shares
similarities with several existing methods, we would like to emphasize a natural connection
with the recently developed Trajectory-based Optimization for Oblique Projections (TrOOP)
[25] and the Operator Inference framework introduced in [28].

TrOOP is a model reduction framework whereby a Petrov--Galerkin reduced-order model
of the form (2.2) is obtained by optimizing the projection operator \BbbP against trajectories of the
full-order model (2.1). More specifically, given r-dimensional subspaces V = Range(\bfPhi ) and
W =Range(\bfPsi ), TrOOP seeks an optimal \BbbP by solving the following optimization problem:

min
(V,W )\in \scrM \mathrm{T}\mathrm{r}\mathrm{O}\mathrm{O}\mathrm{P}

J\mathrm{T}\mathrm{r}\mathrm{O}\mathrm{O}\mathrm{P} =

N - 1\sum 
i=0

\| \bfy (ti) - \^\bfy (ti)\| 2(2.28)

subject to (2.2) (or, equivalently, to (2.3)), where\scrM \mathrm{T}\mathrm{r}\mathrm{O}\mathrm{O}\mathrm{P} = \scrG n,r\times \scrG n,r is the product of two
Grassmann manifolds. While the cost function (2.28) is the same as the one in (2.6), solving
the optimization problem (2.28) is intrusive because TrOOP constrains the reduced-order
dynamics to be the Petrov--Galerkin projection of the full-order dynamics. Consequently,
computing the gradient of the cost function J\mathrm{T}\mathrm{r}\mathrm{O}\mathrm{O}\mathrm{P} with respect to the parameters requires
differentiating through the dynamics \bff in (2.1). This can be seen by deriving the gradient in a
way analogous to that of Proposition 2.1 or, alternatively, following Proposition 4.3 in [25]. As
previously discussed, not all black-box solvers allow for easy differentiation of the governing
equations, so, for this reason, solving the TrOOP optimization problem can be infeasible in
some applications.

Operator Inference, on the other hand, is a non-intrusive model reduction framework
that seeks a reduced-order model by orthogonally projecting the data onto a low-dimensional
subspace and then fitting the reduced-order dynamics. This subspace is typically chosen as
the span of the leading proper orthogonal decomposition (POD) modes associated with some
representative data set generated from (2.1). In particular, given a full-order trajectory \bfx (ti)
sampled from (2.1) at times ti, the time-derivative d\bfx (ti)/dt, the input \bfu (ti), an r-dimensional
subspace spanned by \bfPhi \in \BbbR n\times r, and some parameterization of the reduced-order dynamics
(e.g., \bff r =\bfA r\^\bfz +\bfH r : \^\bfz \^\bfz 

\intercal +\bfB r\bfu ), Operator Inference solves

min
(\bfA r,\bfH r,\bfB r)\in \scrM \mathrm{O}\mathrm{p}\mathrm{I}\mathrm{n}\mathrm{f}

J\mathrm{O}\mathrm{p}\mathrm{I}\mathrm{n}\mathrm{f} =

N - 1\sum 
i=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| d\^\bfz (ti)dt
 - \bfA r\^\bfz (ti) - \bfH r : \^\bfz (ti)\^\bfz (ti)

\intercal  - \bfB r\bfu (ti)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

,(2.29)

where \^\bfz (ti) = \bfPhi \intercal \bfx (ti) and \scrM \mathrm{O}\mathrm{p}\mathrm{I}\mathrm{n}\mathrm{f} = \BbbR r\times r \times \BbbR r\times r\times r \times \BbbR r\times m. As observed in [28], equa-
tion (2.29) can be conveniently written as a linear least-squares problem whose solution is
obtained via the Moore--Penrose inverse rather than via iterative gradient-based algorithms.
Furthermore, given the least-squares nature of the problem, it is straightforward to add reg-
ularization (e.g., to promote stability and/or avoid overfitting) by penalizing the Frobenius
norm of the parameters [21, 34]. While Operator Inference offers a convenient non-intrusive
model reduction platform, it may suffer from the fact that it maps the high-dimensional data
onto a low-dimensional space via orthogonal projection. We shall see that this can lead to
inaccurate models if the full-order dynamics exhibit transient growth (e.g., due to non-normal
mechanisms).
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NON-INTRUSIVE OPTIMIZATION OF REDUCED-ORDER MODELS 3063

It is now clear that our model reduction framework merges concepts from both TrOOP
and Operator Inference. Specifically, TrOOP seeks optimal projections while constraining
the reduced-order dynamics to be of Petrov--Galerkin form, Operator Inference seeks optimal
reduced-order dynamics while constraining the projection operator to be orthogonal and onto
the span of POD modes, and our formulation simultaneously seeks optimal projections and
optimal reduced-order dynamics. Moving forward, we call our formulation ``Non-intrusive
Trajectory-based optimization of Reduced-Order Models"" (NiTROM). In closing this section,
it is also worth mentioning that NiTROM solves an optimization problem similar in spirit
to the one in ``low-rank dynamic mode decomposition"" [33], where the encoder and decoder
are taken to be elements of the Grassmann manifold, and the reduced-order dynamics are
assumed to be linear and discrete in time. Furthermore, by viewing the projection operator as
a linear autoencoder, we can find several connections between NiTROM and existing intrusive
and non-intrusive model reduction formulations that rely on (usually nonlinear) autoencoders
parameterized by neural networks. Recent examples may be found in [13, 10, 24], although,
to the best of our understanding, the only autoencoder architecture that defines a nonlinear
projection onto a curved manifold is presented in [24].

3. Application to a toy model. In this section, we apply NiTROM to a three-dimensional
toy model, and we compare with the intrusive TrOOP and POD Galerkin formulations and
the non-intrusive Operator Inference. The model is governed by the following equations:

\.x1 = - x1 + \nu x1x3 + u,(3.1)

\.x2 = - 2x2 + \nu x2x3 + u,(3.2)

\.x3 = - 5x3 + u,(3.3)

y= x1 + x2 + x3,(3.4)

where \.x1 = dx1/dt and \nu is a parameter. If \nu is small, then these dynamics are effectively
linear and governed by a normal (in fact, diagonal) linear operator. Conversely, if \nu is large,
the dynamics become particularly tedious [25, 26]: not only are they more heavily nonlinear,
but the nonlinearity is such that the rapidly decaying state x3 has a large impact on the
remaining states. Systems where low-energy (or rapidly decaying) states have a large impact
on the remaining states are precisely those where ROMs obtained via orthogonal projection
are more likely to give inaccurate predictions. In order to demonstrate this phenomenon, we
consider two separate cases, \nu = 5 and \nu = 20, and we seek two-dimensional ROMs capable of
predicting the time history of the measured output y in response to step inputs u(t) = \gamma H(t),
where H(t) is the Heaviside step function centered at t = 0, and \gamma \in (0,1/4). Given the
quadratic nature of the full-order dynamics, we seek quadratic ROMs of the form

d\^\bfz 

dt
=\bfA r\^\bfz +\bfH r : \^\bfz \^\bfz 

\intercal +\bfPsi \intercal \bfu ,(3.5)

\^y=\bfC \bfPhi (\bfPsi \intercal \bfPhi ) - 1 \^\bfz ,(3.6)

where \bfC = [111] is a row vector and \bfu = (u,u,u).
For both cases, \nu = 5 and \nu = 20, we train the models as follows. We collect y(t) from

N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j} = 4 step responses generated with \gamma \in \{ 0.01,0.1,0.2,0.248\} and initialized from the rest.
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For each trajectory, we sample y at N = 20 equally spaced times ti \in [0,10]. The cost function
for NiTROM and TrOOP is

J =

N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j} - 1\sum 
j=0

1

\alpha j

N - 1\sum 
i=0

\| y(j)(ti) - \^y(j)(ti)\| 2,(3.7)

with \alpha j =N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j}N\| \bfC \bfx (j)\| 2, where \bfx (j) is the exact steady state that arises in response to the
step input magnitude \gamma (j). (The steady state is computed analytically for simplicity, but it
could just as easily have been computed via time-stepping since all steady states considered
herein are linearly stable.) For both methods, the optimization was performed using the con-
jugate gradient algorithm available in Pymanopt [36], with the ambient-space gradient defined
following Proposition 2.1. Both methods were initialized with \bfPsi = \bfPhi given by the leading
two POD modes computed from the four training step responses. Additionally, NiTROM was
provided with initial reduced-order tensors computed via Galerkin projection of the full-order
dynamics onto the POD modes. The cost function for Operator Inference is

J\mathrm{O}\mathrm{p}\mathrm{I}\mathrm{n}\mathrm{f} =

N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j} - 1\sum 
j=0

1

\alpha j

N - 1\sum 
i=0

\bigm\| \bigm\| \bigm\| \bigm\| d\^\bfz (j)(ti)dt
 - \bfA r\^\bfz 

(j)(ti) - \bfH r : \^\bfz 
(j)(ti)\^\bfz 

(j)(ti)
\intercal  - \bfPhi \intercal \bfu (j)(ti)

\bigm\| \bigm\| \bigm\| \bigm\| 2
+ \lambda \| Mat(\bfH r)\| 2F ,

(3.8)

where \bfPhi are the POD modes that we just described, \^\bfz = \bfPhi \intercal \bfx , Mat(\bfH r) denotes the matri-
cization of the third-order tensor \bfH r, and \lambda is the regularization parameter. In both cases
(\nu = 5 and \nu = 20), \lambda \approx 10 - 7, and the chosen \lambda is (approximately) the one that yields the
best possible Operator Inference model, as measured by the cost function J in (3.7). Also, it
is worth mentioning that the time-derivative of the reduced-order state d\^\bfz (ti)/dt is computed
exactly. That is, d\^\bfz (ti)/dt=\bfPhi \intercal \bff (\bfx (ti)), where \bff denotes the right-hand side of the full-order
dynamics and \bfx (ti) is the training full-order snapshot whose POD coefficients are \^\bfz (ti).

The models were tested by generating 100 step-response trajectories with \gamma sampled uni-
formly at random from the interval (0,1/4). The results are shown in Figure 1(a) for both
values of \nu , where the average error over trajectories is defined as

e(t) =
1

N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j}

N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j} - 1\sum 
j=0

1

\alpha j

\bigm\| \bigm\| \bigm\| y(j)(t) - \^y(j)(t)
\bigm\| \bigm\| \bigm\| 2 ,(3.9)

with \alpha j as in (3.7). Figure 1(a) shows that all models are very accurate when \nu = 5. This
is expected, since we have seen that for lower values of \nu (and for the moderate step input
magnitudes we are considering here) the dynamics of the full-order model are effectively linear
and (more importantly) governed by a normal operator. Therefore, accurate ROMs can be
obtained via orthogonal projection. The accuracy of all the models can also be appreciated
in Figure 2(a), where we see the time history of the output y in response to a sinusoidal input
(recall that we have not trained on sinusoids). By contrast, as we increase \nu to 20, we start
to observe some loss in predictive accuracy, particularly from the models (POD-Galerkin and
Operator Inference) that rely on orthogonal projections. This can be seen in Figure 1(b) and,
even more convincingly, in Figure 2(b). In the latter, we see that while NiTROM and TrOOP
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Figure 1. Toy model: (a) average testing error (3.9) for \nu = 5 (normal dynamics). (b) Analogue for \nu = 20
(non-normal dynamics).
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Figure 2. Toy model: time history of the output y in response to a sinusoidal input u(t) = 0.45(sin(t) +
cos(2t)) with (a) \nu = 5 (normal dynamics) and (b) \nu = 20 (non-normal dynamics). The black continuous line
is the ground-truth given by the full-order model. The rest of the legend is in Figure 1.

provide a very good estimate of the output y in response to a sinusoidal input, the POD-
Galerkin and Operator Inference models struggle to do so. This must be attributed to the
fact that TrOOP and NiTROM identify ROMs via oblique projection, while the other two
methods use orthogonal projections.

For completeness, we also show the decay of the loss function versus conjugate gradient
iterations for both TrOOP and NiTROM in Figure 3. In particular, we observe that in both
cases (\nu = 5 and \nu = 20), NiTROM attains a lower loss function value than TrOOP. However,
in the \nu = 20 case, TrOOP reaches the stopping criterion \| \nabla J\| \leq 10 - 6 much faster than
NiTROM. Presumably, this is due to the fact that NiTROM's optimization landscape is ``less
friendly"" than TrOOP's, as NiTROM admits a larger class of solutions. In fact, while the
larger number of parameters in NiTROM allows for a wider class of reduced-order models, it
may also make it more difficult for the optimizer to find a ``good"" local minimum.

4. Application to the complex Ginzburg--Landau (CGL) equation. In this section, we
consider the complex Ginzburg--Landau (CGL) equation

\partial q

\partial t
=

\biggl( 
 - \nu \partial 

\partial x
+ \gamma 

\partial 2

\partial x2
+ \mu 

\biggr) 
q - a| q| 2q, x\in ( - \infty ,\infty ) , q(x, t)\in \BbbC ,(4.1)
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Figure 3. Toy model: cost function value (3.7) versus conjugate gradient iteration for (a) \nu = 5 and (b)
\nu = 20.

with parameters a= 0.1, \gamma = 1 - i, \nu = 2+0.4i, and \mu =
\bigl( 
\mu 0  - 0.22

\bigr) 
+\mu 2x

2/2 with \mu 2 = - 0.01
and \mu 0 = 0.38. Here, i=

\surd 
 - 1. For this choice of parameters, the origin q(x, t) = 0 is linearly

stable but exhibits significant transient growth due to the non-normal nature of the linear
dynamics [17]. This type of behavior is common in high-shear flows (e.g., boundary layers,
mixing layers, and jets), making the CGL a meaningful and widely used benchmark example.
In this section, we are interested in computing ROMs capable of predicting the input-output
dynamics of (4.1) in response to spatially localized inputs. In particular, we wish to predict
the time history of complex-valued measurements

y=Cq= exp

\biggl\{ 
 - 
\biggl( 
x+ x

s

\biggr) 2\biggr\} 
q(4.2)

in response to complex-valued inputs u that enter the dynamics according to

Bu= exp

\biggl\{ 
 - 
\biggl( 
x - x

s

\biggr) 2\biggr\} 
u.(4.3)

Here, s = 1.6 and x =  - 
\sqrt{} 
 - 2(\mu 0  - 0.22)/\mu 2 is the location of the so-called branch I of the

disturbance-amplification region (see [17] for additional details). Upon spatial discretization
on a grid with n nodes, (4.1) can be written as a real-valued dynamical system with cubic
dynamics

d\bfq 

dt
=\bfA \bfq +\bfH : (\bfq \otimes \bfq \otimes \bfq ) +\bfB \bfu ,

\bfy =\bfC \bfq ,
(4.4)

where the state \bfq \in \BbbR 2n contains the spatially discretized real and imaginary components of
q, \bfu \in \BbbR 2 contains the real and imaginary components of the input u, and \bfy \in \BbbR 2 contains
the real and imaginary components of the output y. Thus, given the form of the full-order
system, we seek cubic reduced-order models with dynamics expressed as the sum of a linear
term, a cubic term, and a linear input term.

We train our models by simulating the response of (4.4) to impulses

\bfB \bfu (t) =

\Biggl\{ 
\beta \bfB \bfe j if t= 0,

0 if t \not = 0,
(4.5)
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Figure 4. CGL: (a) average testing error (analogous to (3.9)). (b) Real part of the output y from a repre-
sentative testing impulse response. The black line in panel (b) denotes the ground-truth response.

where \bfe j \in \BbbR 2 is the unit-norm vector in the standard basis and \beta \in \{  - 1.0,0.01,0.1,1.0\} .
We therefore have a total of N\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{j} = 8 training trajectories, and we collect the output \bfy 
at N = 1000 uniformly spaced time instances ti \in [0,1000]. Since the leading five POD
modes associated with the training data contain approximately 98\% of the variance and are
sufficient to reconstruct the time history of the output \bfy almost perfectly, we seek models of
size r = 5. The cost functions for NiTROM, TrOOP, and Operator Inference are analogous
to those considered in section 3, except that the reduced-order dynamics are cubic and the
normalization constants \alpha j in (3.7) are defined as the time-averaged energy of the output \bfy 
along the jth trajectory. In Operator Inference, the regularization parameter for the reduced-
order fourth-order tensor was chosen as \lambda = 109 following the same criterion described in the
previous section. The NiTROM optimization was initialized with \bfPhi = \bfPsi given by the first
five POD modes of the training data and the reduced-order tensors provided by Operator
Inference. The optimization was conducted using coordinate descent by successively holding
the reduced-order tensors fixed and allowing for the bases \bfPhi and \bfPsi to vary, and vice versa.
On this particular example, we found this procedure to be less prone to getting stuck in ``bad""
local minima. TrOOP, on the other hand, was initialized with \bfPhi and \bfPsi given by Balanced
Truncation [22, 30], since the initialization with POD modes led to a rather inaccurate local
minimum. TrOOP's optimization was carried out using conjugate gradient.

We test the performance of our model by generating 50 trajectories in response to inputs
of the form (4.5) with \beta drawn uniformly at random from [ - 1.0,1.0]. The average error
across all testing trajectories is shown in Figure 4(a), while a representative impulse response
is shown in Figure 4(b). Overall, we see that both NiTROM and TrOOP achieve very good
predictive accuracy and are capable of tracking the output through the heavy oscillatory
transients. By contrast, Operator Inference and the POD-Galerkin model exhibit higher
errors, and this is most likely due to the highly non-normal nature of the CGL dynamics.
In fact, both these methods achieve dimensionality reduction by orthogonally projecting the
state onto the span of POD modes, while, as previously discussed, reduced-order models
for non-normal systems typically require carefully chosen oblique projections. Finally, we
demonstrate the predictive accuracy of NiTROM on unseen sinusoidal inputs of the form
\bfB \bfu (t) = 0.05 sin(k\omega t)\bfB \bfv /\| \bfB \bfv \| , where \bfv \in \BbbR 2 is chosen at random and \omega \approx 0.648 is the
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Figure 5. CGL: Real part of the output y in response to a sinusoidal input with frequencies (a) \omega and
(b) 2\omega , where \omega \approx 0.648 is the fundamental frequency of the system. The black continuous line indicates the
ground-truth, and the rest of the legend is in Figure 4(a).
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Figure 6. CGL: Cost function value versus conjugate gradient iteration for the CGL equation. TrOOP was
initialized with Balanced Truncation, while NiTROM was initialized with Operator Inference.

natural frequency of the system. The results for frequencies \omega and 2\omega are shown in Figure 5,
where we see that NiTROM provides an accurate estimate of the response of the system at
frequency \omega and an acceptable prediction at frequency 2\omega . The reason why the prediction
at 2\omega for both TrOOP and NiTROM is not as clean as the prediction at \omega is because the
training data exhibited dominant oscillatory dynamics at the natural frequency \omega and very
few contributions from other frequencies. Nonetheless, the predictions at 2\omega are better than
those provided by POD-Galerkin and Operator Inference. Before closing this example, we
report on the loss function value for both TrOOP and NiTROM in Figure 6, but we remark
that TrOOP was initialized using Balanced Truncation, while NiTROM was initialized using
Operator Inference.

5. Application to the lid-driven cavity flow. In this section, we apply our model reduction
procedure to an incompressible fluid flow inside a lid-driven square cavity. The flow dynamics
are governed by the incompressible Navier--Stokes equation and by the continuity equation

\partial \bfv 

\partial t
+ \bfv \cdot \nabla \bfv = - \nabla p+Re - 1\nabla 2\bfv ,(5.1)

\nabla \cdot \bfv = 0,(5.2)

where \bfv (\bfx , t) = (u(\bfx , t), v(\bfx , t)) is the two-dimensional velocity vector, p(\bfx , t) is the pressure,
and Re is the Reynolds number. Throughout, we consider a two-dimensional spatial domain
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Figure 7. Cavity flow: panel (a) shows the vorticity field from the steady-state solution that exists at Re=
8300, and panel (b) shows the energy (i.e., the squared two norm) of the seven training trajectories.

D = [0,1]\times [0,1] with zero-velocity boundary conditions at all walls, except for u = 1 at the
top wall. The Reynolds number is held at Re= 8300, where the flow admits a linearly stable
steady state (shown in Figure 7(a)) but exhibits large amplification and significant transient
growth due to the non-normal nature of the underlying linear dynamics. The high degree of
non-normality and consequent transient growth can be appreciated by looking at Figure 7(b),
where we show the time history of the energy of several impulse responses. In particular, we
see that after an initial decay the energy spikes around t = 5 before decaying back to zero.
We discretize the governing equations using a second-order finite-volume scheme on a uniform
fully staggered grid of size Nx\times Ny = 100\times 100. With this spatial discretization, no pressure
boundary conditions need to be imposed. The temporal integration is carried out using the
second-order fractional step (projection) method introduced in [9]. Our solver was validated
by reproducing some of the results in [16].

In this example, we are interested in computing data-driven reduced-order models capable
of predicting the evolution of the flow in response to spatially localized inputs that enter the
x-momentum equation as

B(x, y)w(t) = exp

\biggl\{ 
 - 5000

\Bigl( 
(x - xc)

2 + (y - yc)
2
\Bigr) \biggr\} 

w(t),(5.3)

with xc = yc = 0.95. Upon spatial discretization and removal of the pressure via projection
onto the space of divergence-free vector fields, the dynamics are governed by

d

dt
\bfq =\bfA \bfq +\bfH : \bfq \bfq \intercal +\bfB w,(5.4)

where \bfq \in \BbbR N is the spatially discretized divergence-free velocity field (with N = 2NxNy =
2 \times 104), \bfA governs the linear dynamics, \bfH is a third-order tensor representative of the
quadratic nonlinearity in the Navier--Stokes equation, and \bfB is the input matrix obtained
from (5.3) after enforcing that \bfB generates a divergence-free vector. (For convenience, we
also scale \bfB to unit norm.) Throughout the remainder of this section, we take \bfy = \bfq (i.e., we
observe the time evolution of the whole state).
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5.1. Training procedure. We collect seven training trajectories by simulating (5.4) in
response to impulses

w(t) =

\Biggl\{ 
\beta if t= 0,

0 if t \not = 0,
(5.5)

with \beta \in \{  - 1.0, - 0.25, - 0.05,0.01,0.05,0.25,1.0\} . The time history of the energy of the
training trajectories is shown in Figure 7(b). We save 160 snapshots from each trajectory at
equally distributed temporal instances t\in [0,40], and then we perform POD. Using the first 50
PODmodes, which contain 99.6\% of the variance in the training data, we compute an Operator
Inference model by minimizing the cost function (2.29). We normalize the trajectories by their
time-averaged energy and, as in the previous sections, we also penalize the Frobenius norm of
the third-order tensor \bfH with the regularization parameter taken to be \lambda = 10 - 3.

Given the complexity of the problem and the length of the trajectories, we train NiTROM
as follows. First, we pre-project the data onto the span of the first 200 POD modes, which
contain > 99.99\% of the variance. This guarantees that the optimal NiTROM bases \bfPhi and
\bfPsi satisfy the divergence-free constraint in (5.2), since the POD modes are computed from
divergence-free snapshots. Second, after initializing the search with the Operator Inference
model, we train by progressively extending the length of the forecasting horizon. That is, we
first optimize a model to make predictions up to t= 2.5, then t= 5, and so forth all the way
up to t= 40.

Since, after a first pass, our model exhibited slightly unstable linear dynamics (possibly
due to the presence of numerical noise and/or weak decaying oscillations in the tail end of the
training data), we added a stability-promoting penalty to our cost function as follows,

\widetilde J = J\mathrm{N}\mathrm{i}\mathrm{T}\mathrm{R}\mathrm{O}\mathrm{M} + \mu \| \^\bfz \mathrm{l}\mathrm{i}\mathrm{n}(tf )\| 2.(5.6)

Here, tf is a sufficiently large time (chosen to be 100 in our case) and \^\bfz \mathrm{l}\mathrm{i}\mathrm{n} satisfies

d\^\bfz \mathrm{l}\mathrm{i}\mathrm{n}
dt

=\bfA r\^\bfz \mathrm{l}\mathrm{i}\mathrm{n}, \^\bfz \mathrm{l}\mathrm{i}\mathrm{n}(0) = \^\bfz \mathrm{l}\mathrm{i}\mathrm{n},0,(5.7)

with \^\bfz \mathrm{l}\mathrm{i}\mathrm{n},0 a unit-norm random vector. Notice that this penalty is truly stability-promoting, as
it is analogous to penalizing the Frobenius norm of e\bfA rtf , and shrinking the Frobenius norm
of the exponential map corresponds to pushing the eigenvalues of \bfA r farther into the left-half
plane. The gradient of the penalty term with respect to\bfA r can be computed straightforwardly
following the same logic used in Proposition 2.1. The regularization parameter \mu was held
at zero for most of the training, until we reached a forecasting horizon t = 40 when we set
\mu = 10 - 3. The training was conducted using coordinate descent as described in section 4, and
we stopped the optimization after approximately 2000 iterations.

5.2. Testing. In this section, we compare NiTROM against Operator Inference and POD-
Galerkin. We do not compare against TrOOP because of its intrusive need to access the
linearized dynamics and the adjoint and because we are ultimately interested in comparing
our formulation against other non-intrusive (or weakly intrusive) model reduction techniques.
We test the models by generating 25 impulse responses with the impulse magnitude \beta drawn
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Figure 8. Cavity flow: panel (a) shows the training error from the 7 training impulses responses, and panel
(b) shows the testing error computed for 25 unseen impulse responses. The error is defined in (5.8).
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Figure 9. Cavity flow: evolution of the energy of the perturbations in response to sinusoidal inputs w(t).
The black line is the full-order model, and the rest of the legend is in Figure 8.

uniformly at random from [ - 1,1]. The training and testing errors for NiTROM, Operator
Inference, and the POD-Galerkin model (all with dimension r = 50) are shown in Figure 8.
The error is defined as

e(t) =
N\sum N - 1

i=0 \| \bfq (t)\| 2
\| \bfq (t) - \^\bfq (t)\| 2,(5.8)

where \bfq is the ground-truth and \^\bfq is the prediction given by the ROM. From the figure, we see
that NiTROM maintains a low error across all trajectories and for all times. In particular, we
observe that around t= 5 (when the fluid exhibits its peak in transient growth, as illustrated
in Figure 7(b) the errors produced by POD-Galerkin and Operator Inference can be one to
two orders of magnitude larger than those produced by NiTROM.

As in the previous section, we also test the ability of our reduced-order model to predict
the response of the fluid to sinusoidal inputs w(t) = 0.1 sin(k\omega t) starting from the stable
steady state. The results are shown in Figure 9, where we see the response to harmonics of
\omega = 1.25 and \omega = 1, which are frequencies that are naturally excited by the linear dynamics
of the flow. In all cases, NiTROM exhibits better predictive accuracy than the other models,
and it is capable of tracking the early-stage sharp growth of the perturbations as well as
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Figure 10. Cavity flow: vorticity field at time t= 35 from the trajectory with forcing frequency 4.00 in Figure
9. Red indicates positive vorticy with maximum value 0.73, blue indicates negative vorticity with minimum value
 - 0.73, and white is zero vorticity.

the cavity's long-time oscillatory behavior. Finally, in order to gain further insight into the
performance of these models, we show vorticity snapshots at time t = 35 from two of the
trajectories with frequency. In Figure 10, where the forcing frequency was 4.00, Operator
Inference and POD-Galerkin underestimate the magnitude of the vorticity and they predict
the wrong phase of the vortical structures (observe the vorticity field near the bottom wall at
x= 0.5). In Figure 11, where the forcing frequency is 1.25, on the other hand, POD-Galerkin
provides a reasonable approximation of the vortical structures despite slightly overestimating
the vorticity magnitude, while the Operator Inference estimate is overall quite far from the
ground-truth. By contrast, NiTROM provides an accurate estimate of the vorticity phase and
magnitude in both cases.

6. Conclusion. In this paper, we have introduced a novel non-intrusive data-driven frame-
work to compute accurate reduced-order models of high-dimensional systems that exhibit
large-amplitude transient growth. These systems are ubiquitous in fluid mechanics, and they
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Figure 11. Cavity flow: vorticity field at time t= 35 from the trajectory with forcing frequency 1.25 in Figure
9. Red indicates positive vorticity with maximum value 0.18, blue indicates negative vorticity with minimum
value  - 0.18, and white is zero vorticity.

are known to pose challenges to model reduction methods that achieve dimensionality reduc-
tion via orthogonal projection onto a low-dimensional subspace (or, more generally, onto a
low-dimensional nonlinear manifold). While these challenges can be addressed by intrusive
methods that leverage the underlying form of the governing equations to compute an ap-
propriate oblique projection, purely data-driven frameworks tend to achieve dimensionality
reduction via orthogonal projection, and this can lead to models with poor predictive accuracy.
Given trajectories from the full-order system, we address this issue by solving an optimization
problem to simultaneously find optimal oblique projection operators and reduced-order dy-
namics on their range. The framework is termed NiTROM---``Non-intrusive Trajectory-based
optimization of Reduced-Order Models""---and it is demonstrated on three examples: a simple
toy model governed by three ordinary differential equations, the complex Ginzburg--Landau
equations, and a two-dimensional incompressible lid-driven cavity flow at Reynolds number
Re = 8300. In all these examples, NiTROM outperforms state-of-the-art non-intrusive and
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weakly intrusive methods that rely on orthogonal projections for dimension reduction, and, in
the first two examples it exhibits performance similar to optimal (intrusive) Petrov--Galerkin
reduced-order models obtained using the recently introduced TrOOP formulation [25]. Cur-
rently, NiTROM is formulated as a linear projection model reduction method, but, in the fu-
ture, it would be interesting to explore the possibility of extending it to quadratic (and, more
generally, polynomial) manifolds, as done within the Operator Inference formulation in [14].
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