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 A B S T R A C T

In this paper, we present resolvent4py, a parallel Python package for the analysis, model reduction and 
control of large-scale linear systems with millions or billions of degrees of freedom. This package provides 
the user with a friendly Python-like experience (akin to that of well-established libraries such as numpy and
scipy), while enabling MPI-based parallelism through mpi4py, petsc4py and slepc4py. In turn, this 
allows for the development of streamlined and efficient Python code that can be used to solve several problems 
in fluid mechanics, solid mechanics, graph theory, molecular dynamics and several other fields.
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. Motivation and significance

The development of this package is motivated by recent (and not-
o-recent) advances in the field of fluid mechanics, where linear anal-
sis has been shown to provide great insights into flow physics. For 
xample, linear systems theory can be used to study the stability 
f fluid flows around equilibria, develop feedback control strategies 
o modify the flow behavior and compute reduced-order models to 
ccelerate physical simulations. (We refer the reader to the founda-
ional work of [1] and to the review papers in [2,3] for a more 
n-depth overview of the importance and impact of linear systems 

∗ Corresponding author.
E-mail address: padovan3@illinois.edu (A. Padovan).

1 MPI stands for Message Passing Interface, and it refers to the communication protocol used to exchange data across different processors in distributed-memory 
ystems.

theory in the field of fluid mechanics.) For systems of moderate dimen-
sion (e.g., fewer than 10,000 states), all these tasks can be performed 
straightforwardly with a few lines of Python code thanks to scien-
tific computing libraries like scipy. For larger systems, the need for 
distributed-memory parallelism significantly increases the implemen-
tation complexity of these algorithms, and it often requires the devel-
opment of application-specific software written in compiled languages 
such as C, C++ and Fortran. In fact, until the recent development 
of Python libraries like mpi4py and petsc4py, compiled languages 
represented the only way to write MPI-based1 code. The objective of 
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Fig. 1. Mach number contours of two-dimensional steady state solution for the 
Mach– 7.7 flow over a 15 deg compression ramp.

this package is to address these issues and provide a user-friendly 
pythonic environment similar to that of scipy and numpy, while ex-
ploiting the large-scale parallelism offered by the mpi4py, petsc4py
and slepc4py libraries. In turn, this enables the development of 
user-friendly, streamlined and efficient code to perform day-to-day 
engineering tasks and physical analyses of large-scale systems.

Remark 1.  Although the development of this package is motivated 
by problems in the field of fluid mechanics, resolvent4py is appli-
cation agnostic, and its functionalities can be leveraged for any linear 
system of equations regardless of their origin.

2. Software description

resolvent4py is a Python library for the analysis, model reduc-
tion and control of large-scale linear systems. It relies on mpi4py [4] 
for distributed-memory parallelism, and it leverages the data structures 
and functionalities provided by the petsc4py [5] and slepc4py [6] 
libraries.

2.1. Software architecture

At the core of this package is an abstract class, called Linear-
Operator, which serves as a blueprint for user-defined child classes 
that can be used to define a linear operator 𝐿. All child classes must 
implement at least three methods: apply(), which defines the action 
of 𝐿 on a vector, apply_mat(), which defines the action of 𝐿 on a 
matrix and destroy() to free the memory. The implementation of 
the second method may seem redundant to the reader who is familiar 
with native Python, where the dot() method can be used to apply the 
action of a linear operator to vectors and matrices alike. However, the 
need for this method is dictated by the fact that matrix–vector products 
and matrix–matrix products are performed with different functions and 
data structures in petsc4py.

If desired, additional methods can be implemented. For example, 
we often define the action of the hermitian transpose of a linear op-
erator on vectors and matrices (apply_hermitian_transpose()
and apply_hermitian_transpose_mat(), respectively), the ac-
tion of the inverse 𝐿−1 on vectors, solve(), etc. Below is a list 
of concrete subclasses of LinearOperator that are provided by
resolvent4py:

1. MatrixLinearOperator: the linear operator 𝐿 is defined by 
a sparse, MPI-distributed PETSc matrix.

2. LowRankLinearOperator: the linear operator 𝐿 is defined 
as the product of low-rank factors, 
𝐿 = 𝑈𝛴𝑉 ∗, (1)

where 𝑈 and 𝑉  are ‘‘tall and skinny’’ matrices (i.e., matrices with 
much fewer columns than rows) stored as MPI-distributed SLEPc

BV structures,2 while 𝛴 is a sequential (i.e., non-distributed) 
two-dimensional numpy array of appropriate size.

3. LowRankUpdatedLinearOperator: the linear operator 𝐿 is 
defined as 𝐿 = 𝐴 + 𝑀 , where 𝐴 is itself a resolvent4py
linear operator and 𝑀 = 𝑈𝛴𝑉 ∗ is a low-rank linear operator, as 
described in the previous bullet point. An operator of this form 
arises in several applications (e.g., in linear feedback control 
theory [7]) and, if 𝐴 and 𝐿 are full-rank, then the inverse 
𝐿−1 can be computed using the Woodbury matrix inversion 
lemma [8], 
𝐿−1 = 𝐴−1 − 𝐴−1𝑈𝛴

(

𝐼 + 𝑉 ∗𝐴−1𝑈𝛴
)−1 𝑉 ∗𝐴−1. (2)

4. ProjectionLinearOperator: the linear operator 𝐿 is de-
fined either as 𝐿 = 𝛷 (𝛹∗𝛷)−1 𝛹∗ or 𝐿 = 𝐼−𝛷 (𝛹∗𝛷)−1 𝛹∗, where 
𝛷 and 𝛹 are tall and skinny matrices of size 𝑁×𝑟 stored as SLEPc
BVs. In both cases, 𝐿 defines a projection (i.e., 𝐿2 = 𝐿).

5. ProductLinearOperator: the linear operator 𝐿 is defined 
as the product of other resolvent4py linear operators 𝐿𝑖 of 
conformal dimensions, 
𝐿 = 𝐿𝑚𝐿𝑚−1 …𝐿2𝐿1. (3)

2.2. Software functionalities

Once a linear operator is properly defined, resolvent4py cur-
rently allows for several types of analyses.

1. Eigendecomposition: the user can compute the left and right 
eigendecomposition of the linear operator 𝐿 using the Arnoldi 
algorithm [9]. The shift-and-invert technique [10] can be used to 
compute the eigenvalues that are closest to a target value 𝑠 ∈ C, 
where C is the set of complex numbers.

2. Singular value decomposition (SVD): the user can compute an 
SVD of the linear operator using randomized linear algebra [11,
12]. This is useful for resolvent analysis [1,13,14] and harmonic 
resolvent analysis [15–18]. For the specific case of resolvent 
analysis, the package also offers the possibility of computing the 
SVD using time-stepping techniques [19,20].

3. Linear time-invariant balanced truncation: given the linear op-
erator 𝐿, and appropriately-defined input and output matrices 
𝐵 and 𝐶, the user may compute and balance the associated 
controllability and observability Gramians for model reduction 
purposes [21–24]. Specifically, we implement the algorithm out-
lined in [25]. We remark that there exist additional model 
reduction formulations for linear system, (see, e.g., [26–29] for 
2 and ∞ model reduction and variations thereof), but these 
are not yet implemented in the package.

Additionally, resolvent4py ships with several functions — avai-
lable under the resolvent4py/utils directory and directly acces-
sible to the user via the resolvent4py namespace — that further 
facilitate the use of our package and allow for streamlined application-
specific code development. These include support for:

1. parallel I/O through petsc4py,
2. MPI-based communications using mpi4py,
3. manipulation of PETSc matrices/vectors and SLEPc BVs.

All these features are thoroughly documented using sphinx, and 
demonstrated with several examples that ship with the package.

2 The SLEPc BV structure (where BV stands for ‘‘Basis Vector’’) holds a 
tall and skinny dense matrix whose rows are distributed across different MPI 
processors. The columns, however, are not distributed, and this allows for 
significantly reduced parallel overhead when the number of MPI processors 
is much larger than the number of columns, as is usually the case in practice.
2 
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2.3. Sample code snippet

In this subsection, we show a code snippet similar to the one used in 
Section 3.2 to perform resolvent analysis on the hypersonic flow over 
a cone. The first thing performed by this piece of code is to read in the 
sparse complex-valued matrix 𝐴 of size 𝑁 × 𝑁 . This matrix is stored 
on disk in sparse COO format by means of PETSc-compatible binary 
files ‘‘rows.dat’’, ‘‘columns.dat’’ and ‘‘values.dat’’. 
After assembling 𝐴 as a sparse PETSc matrix, we create a corresponding
MatrixLinearOperator object and we perform resolvent analysis 
using the RSVD-𝛥𝑡 algorithm presented in [19,20]. The desired singular 
values and vectors of the resolvent operator are then saved to file using 
the parallel I/O routines available under the resolvent4py names-
pace. Running this piece of code with, e.g., 20 processors can be done 
with the command mpiexec -n 20 python code_snippet.py.

Listing 1: Resolvent analysis via time stepping
import resolvent4py as res4py
import numpy as np

# Define problem size and read jacobian from file
N = 121404 # Number of global rows (and columns) of A
Nloc = res4py.compute_local_size(N) # Number of local

rows
file_names = ["rows.dat", "columns.dat", "values.dat"]
A = res4py.read_coo_matrix(file_names, ((Nloc, N), (

Nloc, N)))

# Create resolvent4py linear operator
L = res4py.linear_operators.MatrixLinearOperator(A)

# Define the inputs to the rsvd-dt routine
dt = 1e-5 # Time step size
omega = 1.0 # Fundamental frequency (sets period T = 2pi

/omega)
n_omegas = 5 # Number of harmonics of omega to resolve
n_periods = 100 # Number of periods to integrate through
n_loop = 1 # Number of power iterations
n_rand = 30 # Number of random vectors
n_svals = 3 # Number of singular values/vectors to

resolve
tol = 1e-3 # Tolerance to declare that transients have

decayed
verbose = 1 # Verbosity level
Ulst, Slst, Vlst = res4py.linalg.

resolvent_analysis_rsvd_dt(L, dt, omega, n_omegas
, n_periods, n_loops, n_rand, n_svals, tol,
verbose)

# Save to file
np.save("S.npy", Slst[1])
res4py.write_to_file("U.dat", Ulst[1])
res4py.write_to_file("V.dat", Vlst[1])

Remark 2.  We would like to stress how this snippet exposes the 
application-agnostic nature of our package. The governing equations 
(e.g., the linearized fluid dynamics equations, the linearized molecular 
dynamics equations, or any other linear equation from other branches 
of physics) are embedded in the sparse matrix 𝐴 that is passed as 
an input to the script. Once 𝐴 is loaded from file, resolvent4py
performs the desired analysis without additional knowledge of the 
underlying physics.

3. Illustrative examples

3.1. Hypersonic flow over a compression ramp

The first example is a Mach–7.7 flow over a 15 deg compression 
ramp of length 𝐿 = 0.1 m. In the freestream, the Mach number 

Fig. 2. Eigenvalues of the linearized Navier–Stokes equations at non-dimensional 
spanwise wavenumber 𝛽 = 2𝜋∕0.066 computed using resolvent4py (black dots). The 
red crosses denote the eigenvalues in [30] for comparison. The eigenvectors associated 
with 𝜆1, 𝜆2 and 𝜆3 are shown in Fig.  3.

is 𝑀∞ = 7.7, the pressure is 𝑝∞ = 760 Pa, the temperature is 
𝑇∞ = 125 K, the streamwise velocity is 𝑢∞ = 1726 m∕s and the 
Reynolds number based on 𝐿 is 𝑅𝑒∞,𝐿 = 4.2 × 105. This flow con-
figuration is studied extensively in [30], and we refer to the latter 
for details on boundary conditions, spatial discretization, mesh and 
non-dimensionalization. As discussed in [30], this flow admits a two-
dimensional steady state solution (see Fig.  1) that is unstable with 
respect to three-dimensional perturbations. These instabilities can be 
detected by linearizing the governing equations about the aforemen-
tioned steady state and studying the dynamics of three-dimensional, 
spanwise-periodic perturbations with wavenumber 𝛽. Upon lineariza-
tion, the spatially-discretized compressible Navier–Stokes equations can 
be written compactly as 
𝑑
𝑑𝑡

𝑞𝛽 = 𝐴𝛽𝑞𝛽 , 𝑞𝛽 ∈ C𝑁 , (4)

where the state vector 𝑞𝛽 denotes the wavenumber-𝛽 Fourier coeffi-
cients of the spatially-discretized flow variables. Here, given a com-
putational grid of size 𝑛𝑦 × 𝑛𝑥 = 236 × 1076 and 5 flow variables, the 
size of the state vector is 𝑁 = 5 𝑛𝑦 𝑛𝑥 ≈ 1.27 × 106. The eigenvalues of 
𝐴𝛽 and corresponding eigenvectors for (non-dimensional) wavenumber 
𝛽 = 2𝜋∕0.066 are computed using resolvent4py with 240 processors 
on Stampede3 at Texas Advanced Computing Center. The eigenvalues 
are shown in Fig.  2, where we see good agreement with the results 
in Cao et al. [30]. Indeed, we find that the flow exhibits multiple 
instabilities corresponding to the five eigenvalues 𝜆 with real part 
greater than zero. The flow structures associated with these instability 
modes are shown in Fig.  3, where we plot contours of the real part 
of the spanwise velocity component from the eigenvectors correspond-
ing to three unstable eigenvalues. Here, we find that the eigenvector 
corresponding to 𝜆1 exhibits very good qualitative agreement with its 
counterpart in figure 14a in [30]. The eigenvectors corresponding to 𝜆2
and 𝜆3 are very similar in nature to those in figures 14b and 14c in [30], 
but it is important to observe that a direct comparison cannot be made 
since the modes shown in figures 14b and 14c in [30] correspond to 
wavenumbers 𝛽 = 2𝜋∕0.070 and 𝛽 = 2𝜋∕0.079, respectively.

3.2. Hypersonic flow over a cone

Another illustrative example is a Mach–5.9 flow over a 7 deg half-
angle blunt cone. The freestream quantities are 𝑀∞ = 5.9, 𝑝∞ =
3396.3 Pa, 𝑇∞ = 76.74 K, 𝑢∞ = 1036.1 m/s, and 𝑅𝑒∞ = 18 × 106

and the domain length is 𝐿 = 0.4893 m. Bluntness effects produce 
3 
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Fig. 3. Real part of the spanwise velocity component from the eigenvectors corre-
sponding to eigenvalues 𝜆1, 𝜆2 and 𝜆3 in Fig.  2.

Fig. 4. Mach number contours of two-dimensional steady state solution for the Mach–
5.9 flow over a 7 deg blunt cone, truncated to solely the post-shock regime and 
normalized by domain length.

unique instability phenomena in comparison with sharp cones, and are 
extensively studied using various DNS and operator theoretic methods 
in receptivity studies  [31]. At high Mach numbers, a discrete higher-
order mode termed the second Mack mode becomes destabilized and 
dominates laminar-to-turbulent transition. This mechanism manifests 
itself as acoustic waves trapped within the boundary layer. Likewise, 
response modes are modulated by the entropy layer observed near the 
front of the cone, which can contribute to distinct turbulent transition 
mechanisms.

The spatially-discretized Navier–Stokes equations are linearized 
about the base flow shown in Fig.  4, and the singular value decomposi-
tion of the resolvent operator is computed using the RSVD-𝛥t algorithm 
using a script almost identical to the one shown in Section 2.3. The 
temperature perturbations extracted from the leading right and left 
singular vectors of the resolvent are seen in Fig.  5. The response 
mode corresponding to maximal amplification appears trapped in the 
boundary layer, while the forcing mode follows the decaying entropy 
layer’s contour within the boundary layer, indicative of the importance 
of the high entropy gradients of the flow due to bluntness.

4. Impact

In the fluid mechanics community alone, linear systems tools like 
stability analysis [1,30,32], resolvent analysis [13,14,33], open-loop 
and feedback control design [34–36], model reduction of linear time-
invariant and time-periodic systems via balanced truncation [21,23,
25,37], etc., are featured in hundreds of peer-reviewed publications 
and industry applications. However, despite the popularity of these 
methods and algorithms, there is no unified platform that helps with 

Fig. 5. Temperature forcing and response modes computed using RSVD-𝛥t plotted in 
streamwise and wall-normal coordinates normalized by the streamwise length of the 
domain.

their streamlined implementation. resolvent4py aims to bridge 
this gap by offering a Python package that can significantly reduce 
the upfront cost associated with developing parallel code to answer 
pressing research questions in physics and engineering. Specifically, 
not only does resolvent4py ship with fully-parallel state-of-the-art 
algorithms [9,11,12,25] that are used on a daily basis by researchers 
and engineers in several branches of physics, but it also offers a user-
friendly, pythonic environment that allows for rapid code development, 
testing and deployment. In other words, our package can help scientists 
and engineers solve very large-scale problems of practical interest at 
a fraction of the human cost that would otherwise be necessary to 
develop application-specific software. The simple and self-contained 
code snippet in Section 2.3 is a testament to the friendly environment 
enabled by our package.

Additionally, we believe that the current version of resolvent4py
can serve as a stepping stone for additional software development — 
both by the original developers and the scientific community at large — 
that will be featured in future releases. For example, the infrastructure 
of resolvent4py enables the straightforward implementation of 
time-periodic balanced truncation using ‘‘Frequential Gramians’’ [37], 
harmonic resolvent analysis via time stepping [38], wavelet-based 
resolvent analysis [39] and One-Way Navier–Stokes (OWNS) for slowly-
developing flows [40]. Furthermore, it should be possible to implement 
the algorithms discussed in [41,42] for the efficient computation of 
low-rank solutions to Lyapunov and Riccati equations of large-scale, 
sparse linear systems such as those that arise from the spatial dis-
cretization of partial differential equations. These solutions could then 
be leveraged for model reduction and closed-loop control design. 

5. Conclusions

In this manuscript, we introduced resolvent4py, a parallel 
Python package for the analysis, model reduction and control of large-
scale linear systems. Large-scale linear systems with millions or billions 
of degrees of freedom are ubiquitous in the sciences and engineering, 
and this package is built to provide a friendly pythonic environment for 
rapid development and deployment of MPI-based parallel software to 
solve problems of practical interest. Our library leverages mpi4py for 
distributed-memory parallelism, and it uses the functionalities and data 
structures provided by petsc4py and slepc4py to enable stability 
analysis, input/output analysis, model reduction, control and optimiza-
tion of linear time-invariant and time-periodic systems. Additionally, 
the package ships with several functions and features that are available 
to the user through the resolvent4py namespace and that facilitate 
user-specific and application-specific software development within the 
4 
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larger resolvent4py infrastructure. Finally, although the primary 
focus of this package is on linear systems, we wish to remark that the 
data structures and functionalities of resolvent4py can be extended 
straightforwardly to accommodate the analysis, model reduction and 
control of large-scale nonlinear systems.
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