
O

R
c
A
T
a

b

A
c

A

K
P
P
M
R
S
H

C

1

s
y
e
o
t
a
t
i

s

h
R

SoftwareX 31 (2025) 102286

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

esolvent4py: A parallel Python package for analysis, model reduction and

ontrol of large-scale linear systems
lberto Padovan a ,∗, Vishal Anantharaman b, Clarence W. Rowley c , Blaine Vollmer a,
im Colonius b , Daniel J. Bodony a
Department of Aerospace Engineering, University of Illinois Urbana-Champaign, 104 S. Wright St., Urbana, IL 61802, United States of America
Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, United States of
merica
Department of Mechanical and Aerospace Engineering, Princeton University, Olden St., Princeton, NJ 08540, United States of America

 R T I C L E I N F O

eywords:
ython
arallel computing
odel reduction
esolvent analysis
tability analysis
armonic resolvent analysis

 A B S T R A C T

In this paper, we present resolvent4py, a parallel Python package for the analysis, model reduction and
control of large-scale linear systems with millions or billions of degrees of freedom. This package provides
the user with a friendly Python-like experience (akin to that of well-established libraries such as numpy and
scipy), while enabling MPI-based parallelism through mpi4py, petsc4py and slepc4py. In turn, this
allows for the development of streamlined and efficient Python code that can be used to solve several problems
in fluid mechanics, solid mechanics, graph theory, molecular dynamics and several other fields.

ode metadata

Current code version v1.0.1
Permanent link to code/repository used for this code version https://github.com/albertopadovan/resolvent4py
Permanent link to Reproducible Capsule –
Legal Code License MIT
Code versioning system used Git (GitHub)
Software code languages, tools, and services used Python, Petsc4py, Slepc4py, Mpi4py
Compilation requirements, operating environments & dependencies See README file in package distribution
If available Link to developer documentation/manual https://albertopadovan.github.io/resolvent4py/
Support email for questions alberto.padovan.94@gmail.com

. Motivation and significance

The development of this package is motivated by recent (and not-
o-recent) advances in the field of fluid mechanics, where linear anal-
sis has been shown to provide great insights into flow physics. For
xample, linear systems theory can be used to study the stability
f fluid flows around equilibria, develop feedback control strategies
o modify the flow behavior and compute reduced-order models to
ccelerate physical simulations. (We refer the reader to the founda-
ional work of [1] and to the review papers in [2,3] for a more
n-depth overview of the importance and impact of linear systems

∗ Corresponding author.
E-mail address: padovan3@illinois.edu (A. Padovan).

1 MPI stands for Message Passing Interface, and it refers to the communication protocol used to exchange data across different processors in distributed-memory
ystems.

theory in the field of fluid mechanics.) For systems of moderate dimen-
sion (e.g., fewer than 10,000 states), all these tasks can be performed
straightforwardly with a few lines of Python code thanks to scien-
tific computing libraries like scipy. For larger systems, the need for
distributed-memory parallelism significantly increases the implemen-
tation complexity of these algorithms, and it often requires the devel-
opment of application-specific software written in compiled languages
such as C, C++ and Fortran. In fact, until the recent development
of Python libraries like mpi4py and petsc4py, compiled languages
represented the only way to write MPI-based1 code. The objective of
ttps://doi.org/10.1016/j.softx.2025.102286
eceived 25 June 2025; Received in revised form 12 July 2025; Accepted 20 July 2025
vailable online 9 August 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0002-6940-0198
https://orcid.org/0000-0002-9099-5739
https://orcid.org/0000-0003-0326-3909
https://orcid.org/0000-0002-7678-7044
https://github.com/albertopadovan/resolvent4py
https://albertopadovan.github.io/resolvent4py/
mailto:alberto.padovan.94@gmail.com
mailto:padovan3@illinois.edu
https://doi.org/10.1016/j.softx.2025.102286
https://doi.org/10.1016/j.softx.2025.102286
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2025.102286&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Padovan et al. SoftwareX 31 (2025) 102286
Fig. 1. Mach number contours of two-dimensional steady state solution for the
Mach– 7.7 flow over a 15 deg compression ramp.

this package is to address these issues and provide a user-friendly
pythonic environment similar to that of scipy and numpy, while ex-
ploiting the large-scale parallelism offered by the mpi4py, petsc4py
and slepc4py libraries. In turn, this enables the development of
user-friendly, streamlined and efficient code to perform day-to-day
engineering tasks and physical analyses of large-scale systems.

Remark 1. Although the development of this package is motivated
by problems in the field of fluid mechanics, resolvent4py is appli-
cation agnostic, and its functionalities can be leveraged for any linear
system of equations regardless of their origin.

2. Software description

resolvent4py is a Python library for the analysis, model reduc-
tion and control of large-scale linear systems. It relies on mpi4py [4]
for distributed-memory parallelism, and it leverages the data structures
and functionalities provided by the petsc4py [5] and slepc4py [6]
libraries.

2.1. Software architecture

At the core of this package is an abstract class, called Linear-
Operator, which serves as a blueprint for user-defined child classes
that can be used to define a linear operator 𝐿. All child classes must
implement at least three methods: apply(), which defines the action
of 𝐿 on a vector, apply_mat(), which defines the action of 𝐿 on a
matrix and destroy() to free the memory. The implementation of
the second method may seem redundant to the reader who is familiar
with native Python, where the dot() method can be used to apply the
action of a linear operator to vectors and matrices alike. However, the
need for this method is dictated by the fact that matrix–vector products
and matrix–matrix products are performed with different functions and
data structures in petsc4py.

If desired, additional methods can be implemented. For example,
we often define the action of the hermitian transpose of a linear op-
erator on vectors and matrices (apply_hermitian_transpose()
and apply_hermitian_transpose_mat(), respectively), the ac-
tion of the inverse 𝐿−1 on vectors, solve(), etc. Below is a list
of concrete subclasses of LinearOperator that are provided by
resolvent4py:

1. MatrixLinearOperator: the linear operator 𝐿 is defined by
a sparse, MPI-distributed PETSc matrix.

2. LowRankLinearOperator: the linear operator 𝐿 is defined
as the product of low-rank factors,
𝐿 = 𝑈𝛴𝑉 ∗, (1)

where 𝑈 and 𝑉 are ‘‘tall and skinny’’ matrices (i.e., matrices with
much fewer columns than rows) stored as MPI-distributed SLEPc

BV structures,2 while 𝛴 is a sequential (i.e., non-distributed)
two-dimensional numpy array of appropriate size.

3. LowRankUpdatedLinearOperator: the linear operator 𝐿 is
defined as 𝐿 = 𝐴 + 𝑀 , where 𝐴 is itself a resolvent4py
linear operator and 𝑀 = 𝑈𝛴𝑉 ∗ is a low-rank linear operator, as
described in the previous bullet point. An operator of this form
arises in several applications (e.g., in linear feedback control
theory [7]) and, if 𝐴 and 𝐿 are full-rank, then the inverse
𝐿−1 can be computed using the Woodbury matrix inversion
lemma [8],
𝐿−1 = 𝐴−1 − 𝐴−1𝑈𝛴

(

𝐼 + 𝑉 ∗𝐴−1𝑈𝛴
)−1 𝑉 ∗𝐴−1. (2)

4. ProjectionLinearOperator: the linear operator 𝐿 is de-
fined either as 𝐿 = 𝛷 (𝛹∗𝛷)−1 𝛹∗ or 𝐿 = 𝐼−𝛷 (𝛹∗𝛷)−1 𝛹∗, where
𝛷 and 𝛹 are tall and skinny matrices of size 𝑁×𝑟 stored as SLEPc
BVs. In both cases, 𝐿 defines a projection (i.e., 𝐿2 = 𝐿).

5. ProductLinearOperator: the linear operator 𝐿 is defined
as the product of other resolvent4py linear operators 𝐿𝑖 of
conformal dimensions,
𝐿 = 𝐿𝑚𝐿𝑚−1 …𝐿2𝐿1. (3)

2.2. Software functionalities

Once a linear operator is properly defined, resolvent4py cur-
rently allows for several types of analyses.

1. Eigendecomposition: the user can compute the left and right
eigendecomposition of the linear operator 𝐿 using the Arnoldi
algorithm [9]. The shift-and-invert technique [10] can be used to
compute the eigenvalues that are closest to a target value 𝑠 ∈ C,
where C is the set of complex numbers.

2. Singular value decomposition (SVD): the user can compute an
SVD of the linear operator using randomized linear algebra [11,
12]. This is useful for resolvent analysis [1,13,14] and harmonic
resolvent analysis [15–18]. For the specific case of resolvent
analysis, the package also offers the possibility of computing the
SVD using time-stepping techniques [19,20].

3. Linear time-invariant balanced truncation: given the linear op-
erator 𝐿, and appropriately-defined input and output matrices
𝐵 and 𝐶, the user may compute and balance the associated
controllability and observability Gramians for model reduction
purposes [21–24]. Specifically, we implement the algorithm out-
lined in [25]. We remark that there exist additional model
reduction formulations for linear system, (see, e.g., [26–29] for
2 and ∞ model reduction and variations thereof), but these
are not yet implemented in the package.

Additionally, resolvent4py ships with several functions — avai-
lable under the resolvent4py/utils directory and directly acces-
sible to the user via the resolvent4py namespace — that further
facilitate the use of our package and allow for streamlined application-
specific code development. These include support for:

1. parallel I/O through petsc4py,
2. MPI-based communications using mpi4py,
3. manipulation of PETSc matrices/vectors and SLEPc BVs.

All these features are thoroughly documented using sphinx, and
demonstrated with several examples that ship with the package.

2 The SLEPc BV structure (where BV stands for ‘‘Basis Vector’’) holds a
tall and skinny dense matrix whose rows are distributed across different MPI
processors. The columns, however, are not distributed, and this allows for
significantly reduced parallel overhead when the number of MPI processors
is much larger than the number of columns, as is usually the case in practice.
2

A. Padovan et al. SoftwareX 31 (2025) 102286
2.3. Sample code snippet

In this subsection, we show a code snippet similar to the one used in
Section 3.2 to perform resolvent analysis on the hypersonic flow over
a cone. The first thing performed by this piece of code is to read in the
sparse complex-valued matrix 𝐴 of size 𝑁 × 𝑁 . This matrix is stored
on disk in sparse COO format by means of PETSc-compatible binary
files ‘‘rows.dat’’, ‘‘columns.dat’’ and ‘‘values.dat’’.
After assembling 𝐴 as a sparse PETSc matrix, we create a corresponding
MatrixLinearOperator object and we perform resolvent analysis
using the RSVD-𝛥𝑡 algorithm presented in [19,20]. The desired singular
values and vectors of the resolvent operator are then saved to file using
the parallel I/O routines available under the resolvent4py names-
pace. Running this piece of code with, e.g., 20 processors can be done
with the command mpiexec -n 20 python code_snippet.py.

Listing 1: Resolvent analysis via time stepping
import resolvent4py as res4py
import numpy as np

Define problem size and read jacobian from file
N = 121404 # Number of global rows (and columns) of A
Nloc = res4py.compute_local_size(N) # Number of local

rows
file_names = ["rows.dat", "columns.dat", "values.dat"]
A = res4py.read_coo_matrix(file_names, ((Nloc, N), (

Nloc, N)))

Create resolvent4py linear operator
L = res4py.linear_operators.MatrixLinearOperator(A)

Define the inputs to the rsvd-dt routine
dt = 1e-5 # Time step size
omega = 1.0 # Fundamental frequency (sets period T = 2pi

/omega)
n_omegas = 5 # Number of harmonics of omega to resolve
n_periods = 100 # Number of periods to integrate through
n_loop = 1 # Number of power iterations
n_rand = 30 # Number of random vectors
n_svals = 3 # Number of singular values/vectors to

resolve
tol = 1e-3 # Tolerance to declare that transients have

decayed
verbose = 1 # Verbosity level
Ulst, Slst, Vlst = res4py.linalg.

resolvent_analysis_rsvd_dt(L, dt, omega, n_omegas
, n_periods, n_loops, n_rand, n_svals, tol,
verbose)

Save to file
np.save("S.npy", Slst[1])
res4py.write_to_file("U.dat", Ulst[1])
res4py.write_to_file("V.dat", Vlst[1])

Remark 2. We would like to stress how this snippet exposes the
application-agnostic nature of our package. The governing equations
(e.g., the linearized fluid dynamics equations, the linearized molecular
dynamics equations, or any other linear equation from other branches
of physics) are embedded in the sparse matrix 𝐴 that is passed as
an input to the script. Once 𝐴 is loaded from file, resolvent4py
performs the desired analysis without additional knowledge of the
underlying physics.

3. Illustrative examples

3.1. Hypersonic flow over a compression ramp

The first example is a Mach–7.7 flow over a 15 deg compression
ramp of length 𝐿 = 0.1 m. In the freestream, the Mach number

Fig. 2. Eigenvalues of the linearized Navier–Stokes equations at non-dimensional
spanwise wavenumber 𝛽 = 2𝜋∕0.066 computed using resolvent4py (black dots). The
red crosses denote the eigenvalues in [30] for comparison. The eigenvectors associated
with 𝜆1, 𝜆2 and 𝜆3 are shown in Fig. 3.

is 𝑀∞ = 7.7, the pressure is 𝑝∞ = 760 Pa, the temperature is
𝑇∞ = 125 K, the streamwise velocity is 𝑢∞ = 1726 m∕s and the
Reynolds number based on 𝐿 is 𝑅𝑒∞,𝐿 = 4.2 × 105. This flow con-
figuration is studied extensively in [30], and we refer to the latter
for details on boundary conditions, spatial discretization, mesh and
non-dimensionalization. As discussed in [30], this flow admits a two-
dimensional steady state solution (see Fig. 1) that is unstable with
respect to three-dimensional perturbations. These instabilities can be
detected by linearizing the governing equations about the aforemen-
tioned steady state and studying the dynamics of three-dimensional,
spanwise-periodic perturbations with wavenumber 𝛽. Upon lineariza-
tion, the spatially-discretized compressible Navier–Stokes equations can
be written compactly as
𝑑
𝑑𝑡

𝑞𝛽 = 𝐴𝛽𝑞𝛽 , 𝑞𝛽 ∈ C𝑁 , (4)

where the state vector 𝑞𝛽 denotes the wavenumber-𝛽 Fourier coeffi-
cients of the spatially-discretized flow variables. Here, given a com-
putational grid of size 𝑛𝑦 × 𝑛𝑥 = 236 × 1076 and 5 flow variables, the
size of the state vector is 𝑁 = 5 𝑛𝑦 𝑛𝑥 ≈ 1.27 × 106. The eigenvalues of
𝐴𝛽 and corresponding eigenvectors for (non-dimensional) wavenumber
𝛽 = 2𝜋∕0.066 are computed using resolvent4py with 240 processors
on Stampede3 at Texas Advanced Computing Center. The eigenvalues
are shown in Fig. 2, where we see good agreement with the results
in Cao et al. [30]. Indeed, we find that the flow exhibits multiple
instabilities corresponding to the five eigenvalues 𝜆 with real part
greater than zero. The flow structures associated with these instability
modes are shown in Fig. 3, where we plot contours of the real part
of the spanwise velocity component from the eigenvectors correspond-
ing to three unstable eigenvalues. Here, we find that the eigenvector
corresponding to 𝜆1 exhibits very good qualitative agreement with its
counterpart in figure 14a in [30]. The eigenvectors corresponding to 𝜆2
and 𝜆3 are very similar in nature to those in figures 14b and 14c in [30],
but it is important to observe that a direct comparison cannot be made
since the modes shown in figures 14b and 14c in [30] correspond to
wavenumbers 𝛽 = 2𝜋∕0.070 and 𝛽 = 2𝜋∕0.079, respectively.

3.2. Hypersonic flow over a cone

Another illustrative example is a Mach–5.9 flow over a 7 deg half-
angle blunt cone. The freestream quantities are 𝑀∞ = 5.9, 𝑝∞ =
3396.3 Pa, 𝑇∞ = 76.74 K, 𝑢∞ = 1036.1 m/s, and 𝑅𝑒∞ = 18 × 106

and the domain length is 𝐿 = 0.4893 m. Bluntness effects produce
3

A. Padovan et al. SoftwareX 31 (2025) 102286
Fig. 3. Real part of the spanwise velocity component from the eigenvectors corre-
sponding to eigenvalues 𝜆1, 𝜆2 and 𝜆3 in Fig. 2.

Fig. 4. Mach number contours of two-dimensional steady state solution for the Mach–
5.9 flow over a 7 deg blunt cone, truncated to solely the post-shock regime and
normalized by domain length.

unique instability phenomena in comparison with sharp cones, and are
extensively studied using various DNS and operator theoretic methods
in receptivity studies [31]. At high Mach numbers, a discrete higher-
order mode termed the second Mack mode becomes destabilized and
dominates laminar-to-turbulent transition. This mechanism manifests
itself as acoustic waves trapped within the boundary layer. Likewise,
response modes are modulated by the entropy layer observed near the
front of the cone, which can contribute to distinct turbulent transition
mechanisms.

The spatially-discretized Navier–Stokes equations are linearized
about the base flow shown in Fig. 4, and the singular value decomposi-
tion of the resolvent operator is computed using the RSVD-𝛥t algorithm
using a script almost identical to the one shown in Section 2.3. The
temperature perturbations extracted from the leading right and left
singular vectors of the resolvent are seen in Fig. 5. The response
mode corresponding to maximal amplification appears trapped in the
boundary layer, while the forcing mode follows the decaying entropy
layer’s contour within the boundary layer, indicative of the importance
of the high entropy gradients of the flow due to bluntness.

4. Impact

In the fluid mechanics community alone, linear systems tools like
stability analysis [1,30,32], resolvent analysis [13,14,33], open-loop
and feedback control design [34–36], model reduction of linear time-
invariant and time-periodic systems via balanced truncation [21,23,
25,37], etc., are featured in hundreds of peer-reviewed publications
and industry applications. However, despite the popularity of these
methods and algorithms, there is no unified platform that helps with

Fig. 5. Temperature forcing and response modes computed using RSVD-𝛥t plotted in
streamwise and wall-normal coordinates normalized by the streamwise length of the
domain.

their streamlined implementation. resolvent4py aims to bridge
this gap by offering a Python package that can significantly reduce
the upfront cost associated with developing parallel code to answer
pressing research questions in physics and engineering. Specifically,
not only does resolvent4py ship with fully-parallel state-of-the-art
algorithms [9,11,12,25] that are used on a daily basis by researchers
and engineers in several branches of physics, but it also offers a user-
friendly, pythonic environment that allows for rapid code development,
testing and deployment. In other words, our package can help scientists
and engineers solve very large-scale problems of practical interest at
a fraction of the human cost that would otherwise be necessary to
develop application-specific software. The simple and self-contained
code snippet in Section 2.3 is a testament to the friendly environment
enabled by our package.

Additionally, we believe that the current version of resolvent4py
can serve as a stepping stone for additional software development —
both by the original developers and the scientific community at large —
that will be featured in future releases. For example, the infrastructure
of resolvent4py enables the straightforward implementation of
time-periodic balanced truncation using ‘‘Frequential Gramians’’ [37],
harmonic resolvent analysis via time stepping [38], wavelet-based
resolvent analysis [39] and One-Way Navier–Stokes (OWNS) for slowly-
developing flows [40]. Furthermore, it should be possible to implement
the algorithms discussed in [41,42] for the efficient computation of
low-rank solutions to Lyapunov and Riccati equations of large-scale,
sparse linear systems such as those that arise from the spatial dis-
cretization of partial differential equations. These solutions could then
be leveraged for model reduction and closed-loop control design.

5. Conclusions

In this manuscript, we introduced resolvent4py, a parallel
Python package for the analysis, model reduction and control of large-
scale linear systems. Large-scale linear systems with millions or billions
of degrees of freedom are ubiquitous in the sciences and engineering,
and this package is built to provide a friendly pythonic environment for
rapid development and deployment of MPI-based parallel software to
solve problems of practical interest. Our library leverages mpi4py for
distributed-memory parallelism, and it uses the functionalities and data
structures provided by petsc4py and slepc4py to enable stability
analysis, input/output analysis, model reduction, control and optimiza-
tion of linear time-invariant and time-periodic systems. Additionally,
the package ships with several functions and features that are available
to the user through the resolvent4py namespace and that facilitate
user-specific and application-specific software development within the
4

A. Padovan et al. SoftwareX 31 (2025) 102286
larger resolvent4py infrastructure. Finally, although the primary
focus of this package is on linear systems, we wish to remark that the
data structures and functionalities of resolvent4py can be extended
straightforwardly to accommodate the analysis, model reduction and
control of large-scale nonlinear systems.

CRediT authorship contribution statement

Alberto Padovan: Writing – original draft, Validation, Software,
Conceptualization. Vishal Anantharaman: Writing – original draft,
Validation, Software. Clarence W. Rowley: Writing – review & editing,
Software, Funding acquisition. Blaine Vollmer: Writing – review &
editing, Software. Tim Colonius: Writing – review & editing, Funding
acquisition. Daniel J. Bodony: Writing – review & editing, Funding
acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Clarence W. Rowley reports financial support was provided by Air
Force Office of Scientific Research. Daniel J. Bodony reports financial
support was provided by Office of Naval Research. Tim Colonius reports
financial support was provided by Office of Naval Research. Tim Colo-
nius reports financial support was provided by The Boeing Company.
Daniel J. Bodony reports financial support was provided by National
Science Foundation. Daniel J. Bodony reports financial support was
provided by Sandia National Laboratories. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This material is based upon work supported by the National Science
Foundation, United States under Grant No. 2139536, issued to the Uni-
versity of Illinois at Urbana-Champaign by the Texas Advanced Com-
puting Center under subaward UTAUS-SUB00000545 with Dr. Daniel
Stanzione as the PI. DB gratefully acknowledges support from the
Office of Naval Research, United States (N00014-21-1-2256), and CR
gratefully acknowledges support from the Air Force Office of Scientific
Research, United States (FA9550-19-1-0005). TC and VA gratefully
acknowledge support from The Boeing Company, United States (CT-BA-
GTA-1) and the Office of Naval Research, United States (N00014-25-
1-2072). BV was supported by the LDRD Program at Sandia National
Laboratories, United States. Sandia is managed and operated by NT-
ESS under DOE NNSA contract DE-NA0003525. The computations
in Section 3.1 were performed on TACC’s Stampede3 under ACCESS
allocation CTS090004.

References

[1] Schmid PJ, Henningson DS. In: Stability and transition in shear flows, vol. 142,
Springer-Verlag New York; 2001.

[2] Rowley CW, Dawson STM. Model reduction for flow analysis and control. Annu
Rev Fluid Mech 2017;49:387–417.

[3] Jovanović MR. From bypass transition to flow control and data-driven
turbulence modeling: An input–output viewpoint. Annu Rev Fluid Mech
2021;53(2021):311–45. http://dx.doi.org/10.1146/annurev-fluid-010719-
060244.

[4] Dalcin L, Kler P, Paz R, Cosimo A. Parallel distributed computing using python.
Adv Water Resour 2011;34(9):1124–39. http://dx.doi.org/10.1016/j.advwatres.
2011.04.013.

[5] Balay S, Abhyankar S, Adams M, Benson S, Brown J, Brune P, et al. PETSc/TAO
Users Manual, ANL-21/39 - Revision 3.23. 2025, http://dx.doi.org/10.2172/
2476320.

[6] Hernandez V, Roman JE, Vidal V. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans Math Software 2005;31(3):351–62.

[7] Natarajan M, Freund JB, Bodony DJ. Actuator selection and placement for
localized feedback flow control. J Fluid Mech 2016;809:775–92. http://dx.doi.
org/10.1017/jfm.2016.700.

[8] Woodbury MA. Inverting modified matrices. In: Memorandum rept. 42, statistical
research group, Princeton Univ.; 1950, p. vol. 4.

[9] Arnoldi WE. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quart Appl Math 1951;9:17–29. http://dx.doi.org/10.1090/
qam/42792.

[10] Saad Y. Numerical methods for large eigenvalue problems. SIAM; 2011, http:
//dx.doi.org/10.1137/1.9781611970739.

[11] Halko N, Martinsson PG, Tropp JA. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev 2011;53:217–88.

[12] Ribeiro JHM, Yeh C-A, Taira K. Randomized resolvent analysis. Phys Rev Fluids
2020;5:033902. http://dx.doi.org/10.1103/PhysRevFluids.5.033902.

[13] Jovanović MR, Bamieh B. Componentwise energy amplification in channel flows.
J Fluid Mech 2005;534:145–83.

[14] McKeon BJ, Sharma AS. A critical-layer framework for turbulent pipe flow. J
Fluid Mech 2010;658:336–82.

[15] Padovan A, Otto SE, Rowley CW. Analysis of amplification mechanisms and
cross-frequency interactions in nonlinear flows via the harmonic resolvent. J
Fluid Mech 2020;900. http://dx.doi.org/10.1017/jfm.2020.497.

[16] Padovan A, Rowley CW. Analysis of the dynamics of subharmonic flow structures
via the harmonic resolvent: Application to vortex pairing in an axisymmetric
jet. Phys Rev Fluids 2022;7:073903. http://dx.doi.org/10.1103/PhysRevFluids.7.
073903.

[17] Wu W, Meneveau C, Mittal R, Padovan A, Rowley CW, Cattafesta L. Response of
a turbulent separation bubble to zero-net-mass-flux jet perturbations. Phys Rev
Fluids 2022;7:084601. http://dx.doi.org/10.1103/PhysRevFluids.7.084601.

[18] Islam MR, Sun Y. Identification of cross-frequency interactions in compressible
cavity flow using harmonic resolvent analysis. J Fluid Mech 2024;1000:A13.
http://dx.doi.org/10.1017/jfm.2024.949.

[19] Martini E, Rodríguez D, Towne A, Cavalieri AV. Efficient computation of global
resolvent modes. J Fluid Mech 2021;919:A3. http://dx.doi.org/10.1017/jfm.
2021.364.

[20] Farghadan A, Martini E, Towne A. Scalable resolvent analysis for three-
dimensional flows. J Comput Phys 2025;524:113695. http://dx.doi.org/10.1016/
j.jcp.2024.113695.

[21] Moore B. Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction. IEEE Trans Autom Control 1981;26(1):17–32.

[22] Dullerud GE, Paganini F. A course in robust control theory: a convex approach.
Springer New York; 2000.

[23] Rowley CW. Model reduction for fluids using balanced proper orthogonal
decomposition. Int J Bifurc Chaos 2005;15(03):997–1013.

[24] Baur U, Benner P, Feng L. Model order reduction for linear and nonlinear
systems: a system-theoretic perspective. 2014;21(4):331–58.

[25] Dergham G, Sipp D, Robinet J-C, Barbagallo A. Model reduction for fluids using
frequential snapshots. Phys Fluids 2011;23:064101. http://dx.doi.org/10.1063/
1.3590732.

[26] Gugercin S, Antoulas AC, Beattie C. 2 model reduction for large-scale linear
dynamical systems. 2008;30(2):609–38.

[27] Flagg G, Beattie CA, Gugercin S. Interpolatory ∞ model reduction. Systems
Control Lett 2013;62(7).

[28] Benner P, Gugercin S, Willcox K. In: A survey of projection-based model
reduction methods for parametric dynamical systems, vol. 57, (4):SIAM; 2015,
p. 483–531.

[29] Benner P, Mehrmann V, Sorensen DC. Dimension reduction of large-scale
systems. In: Dimension reduction of large-scale systems. Lecture notes in com-
putational science and engineering, vol. 45, Springer; 2005, p. 3–32. http:
//dx.doi.org/10.1007/3-540-27909-1_1.

[30] Cao S, Hao J, Klioutchnikov I, Olivier H, Wen C-Y. Unsteady effects in a
hypersonic compression ramp flow with laminar separation. J Fluid Mech
2021;912:A3. http://dx.doi.org/10.1017/jfm.2020.1093.

[31] Cook DA, Nichols JW. Three-dimensional receptivity of hypersonic sharp and
blunt cones to free-stream planar waves using hierarchical input-output analy-
sis. Phys Rev Fluids 2024;9:063901. http://dx.doi.org/10.1103/PhysRevFluids.9.
063901.

[32] Vollmer B, Padovan A, Bodony DJ. Surface instabilities in laminar compressible
boundary layers with sublimation. 2025, arXiv:2503.11631. URL https://arxiv.
org/abs/2503.11631.

[33] Herrmann B, Baddoo PJ, Semaan R, Brunton SL, McKeon BJ. Data-driven
resolvent analysis. J Fluid Mech 2021;918:A10. http://dx.doi.org/10.1017/jfm.
2021.337.

[34] Semeraro O, Pralits JO, Rowley CW, Henningson DS. Riccati-less approach for
optimal control and estimation: an application to two-dimensional boundary
layers. J Fluid Mech 2013;731:394–417.

[35] Yeh C-A, Taira K. Resolvent-analysis-based design of airfoil separation control.
J Fluid Mech 2019;867:572–610. http://dx.doi.org/10.1017/jfm.2019.163.

[36] Woo J, Murthy SR, Bodony DJ. Resolvent-based framework for jet noise
reduction of a low-bypass ratio coannular nozzle. In: AIAA Scitech 2024 forum.
2024, http://dx.doi.org/10.2514/6.2024-2805.
5

http://refhub.elsevier.com/S2352-7110(25)00252-3/sb1
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb1
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb1
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb2
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb2
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb2
http://dx.doi.org/10.1146/annurev-fluid-010719-060244
http://dx.doi.org/10.1146/annurev-fluid-010719-060244
http://dx.doi.org/10.1146/annurev-fluid-010719-060244
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.2172/2476320
http://dx.doi.org/10.2172/2476320
http://dx.doi.org/10.2172/2476320
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb6
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb6
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb6
http://dx.doi.org/10.1017/jfm.2016.700
http://dx.doi.org/10.1017/jfm.2016.700
http://dx.doi.org/10.1017/jfm.2016.700
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb8
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb8
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb8
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1137/1.9781611970739
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb11
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb11
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb11
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb11
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb11
http://dx.doi.org/10.1103/PhysRevFluids.5.033902
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb13
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb13
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb13
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb14
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb14
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb14
http://dx.doi.org/10.1017/jfm.2020.497
http://dx.doi.org/10.1103/PhysRevFluids.7.073903
http://dx.doi.org/10.1103/PhysRevFluids.7.073903
http://dx.doi.org/10.1103/PhysRevFluids.7.073903
http://dx.doi.org/10.1103/PhysRevFluids.7.084601
http://dx.doi.org/10.1017/jfm.2024.949
http://dx.doi.org/10.1017/jfm.2021.364
http://dx.doi.org/10.1017/jfm.2021.364
http://dx.doi.org/10.1017/jfm.2021.364
http://dx.doi.org/10.1016/j.jcp.2024.113695
http://dx.doi.org/10.1016/j.jcp.2024.113695
http://dx.doi.org/10.1016/j.jcp.2024.113695
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb21
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb21
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb21
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb22
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb22
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb22
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb23
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb23
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb23
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb24
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb24
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb24
http://dx.doi.org/10.1063/1.3590732
http://dx.doi.org/10.1063/1.3590732
http://dx.doi.org/10.1063/1.3590732
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb26
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb26
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb26
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb27
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb27
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb27
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb28
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb28
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb28
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb28
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb28
http://dx.doi.org/10.1007/3-540-27909-1_1
http://dx.doi.org/10.1007/3-540-27909-1_1
http://dx.doi.org/10.1007/3-540-27909-1_1
http://dx.doi.org/10.1017/jfm.2020.1093
http://dx.doi.org/10.1103/PhysRevFluids.9.063901
http://dx.doi.org/10.1103/PhysRevFluids.9.063901
http://dx.doi.org/10.1103/PhysRevFluids.9.063901
http://arxiv.org/abs/2503.11631
https://arxiv.org/abs/2503.11631
https://arxiv.org/abs/2503.11631
https://arxiv.org/abs/2503.11631
http://dx.doi.org/10.1017/jfm.2021.337
http://dx.doi.org/10.1017/jfm.2021.337
http://dx.doi.org/10.1017/jfm.2021.337
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb34
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb34
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb34
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb34
http://refhub.elsevier.com/S2352-7110(25)00252-3/sb34
http://dx.doi.org/10.1017/jfm.2019.163
http://dx.doi.org/10.2514/6.2024-2805

A. Padovan et al. SoftwareX 31 (2025) 102286
[37] Padovan A, Rowley CW. Continuous-time balanced truncation for time-periodic
fluid flows using frequential gramians. J Comput Phys 2024;496:112597. http:
//dx.doi.org/10.1016/j.jcp.2023.112597.

[38] Farghadan A, Jung J, Bhagwat R, Towne A. Efficient harmonic resolvent analysis
via time stepping. Theor Comput Fluid Dyn 2024;38(3):331. http://dx.doi.org/
10.1007/s00162-024-00694-1.

[39] Ballouz E, Lopez-Doriga B, Dawson ST, Bae HJ. Wavelet-based resolvent analysis
of non-stationary flows. J Fluid Mech 2024;999:A53. http://dx.doi.org/10.1017/
jfm.2024.903.

[40] Towne A, Rigas G, Kamal O, Pickering E, Colonius T. Efficient global resolvent
analysis via the one-way Navier–Stokes equations. J Fluid Mech 2022;948:A9.
http://dx.doi.org/10.1017/jfm.2022.647.

[41] Benner P, Li J-R, Penzl T. Numerical solution of large-scale Lyapunov equations,
riccati equations, and linear-quadratic optimal control problems. Numer Linear
Algebra Appl 2008;15(9):755–77. http://dx.doi.org/10.1002/nla.622.

[42] Benner P, Saak J. Numerical solution of large and sparse continuous time
algebraic matrix riccati and Lyapunov equations: a state of the art survey.
GAMM-Mitt 2013;36(1):32–52. http://dx.doi.org/10.1002/gamm.201310003.
6

http://dx.doi.org/10.1016/j.jcp.2023.112597
http://dx.doi.org/10.1016/j.jcp.2023.112597
http://dx.doi.org/10.1016/j.jcp.2023.112597
http://dx.doi.org/10.1007/s00162-024-00694-1
http://dx.doi.org/10.1007/s00162-024-00694-1
http://dx.doi.org/10.1007/s00162-024-00694-1
http://dx.doi.org/10.1017/jfm.2024.903
http://dx.doi.org/10.1017/jfm.2024.903
http://dx.doi.org/10.1017/jfm.2024.903
http://dx.doi.org/10.1017/jfm.2022.647
http://dx.doi.org/10.1002/nla.622
http://dx.doi.org/10.1002/gamm.201310003

	Resolvent4py: A parallel Python package for analysis, model reduction and control of large-scale linear systems
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Sample code snippet

	Illustrative examples
	Hypersonic flow over a compression ramp
	Hypersonic flow over a cone

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

