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The 𝐵′ formulation can be understood as a mass and energy conservation formalism at a reacting singular surface. 
In hypersonics applications, it is typically used to compute the chemical equilibrium properties of gaseous 
mixtures at ablating surfaces, and to estimate the recession velocity of the interface. In the first half of the 
paper, we derive the 𝐵′ formulation to emphasize first principles. In particular, while we eventually specialize to 
the commonly considered case of chemical equilibrium boundary layers that satisfy the heat and mass transfer 
analogy, we first derive a general interface jump condition that lets us highlight all the underlying assumptions 
of the well-known 𝐵′ equations. This procedure helps elucidate the nature of the 𝐵′ formalism and it also allows 
us to straightforwardly extend the original formulation. Specifically, when applied at the interface between a 
porous material and a boundary layer (as in thermal protection systems applications), the original formulation 
assumes unidirectional advective transport of gaseous species from the porous material to the boundary layer 
(i.e., blowing). However, under conditions that may appear in hypersonic flight or in ground-based wind tunnels, 
boundary layer gases can enter the porous material due to a favorable pressure gradient. We show that this 
scenario can be easily handled via a straightforward modification to the 𝐵′ formalism, and we demonstrate via 
examples that accounting for gas entering the material can impact the predicted recession velocity of ablating 
surfaces. In order to facilitate the implementation of the extended 𝐵′ formulation in existing material response 
codes, we present a short algorithm in section 5 and we also refer readers to a GitHub repository where the 
scripts used to generate the modified 𝐵′ tables are publicly available.
1. Introduction

Understanding the fluid-structure interaction between a high-speed 
boundary layer and a reacting porous material is important for various 
applications, including the design of thermal protection systems (TPS) 
for atmospheric reentry. High-fidelity simulations that aim to study the 
coupled physics between the fluid and the solid, necessarily require 
access to computational fluid dynamics (CFD) codes that simulate the 
physics of the boundary layer, and to material response codes that simu-

late the dynamic response of the material. However, if we are primarily 
interested in studying the response of the material, or if we seek a low-

resolution estimate of the fluid-material interaction, fully resolving the 
boundary layer dynamics is a computational burden. In order to circum-

vent the need to perform a fully resolved CFD calculation, researchers 
have developed first-principles formulations that model the mass, mo-
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mentum and energy transfer at the interface between a reacting solid 
and a boundary layer. The 𝐵′ formalism discussed in this paper is one 
such formulation, and it allows to (i) run the material response code 
independently of a fluid solver when we are uninterested in the fluid 
mechanics, or (ii) provide a low-resolution interface boundary condi-

tion when we seek a low-resolution estimate of the coupled system.

The 𝐵′ formalism can be considered as a mass and energy flux-

balance condition, arising from a control volume analysis at the in-

terface between two different media. In TPS and ablation applications 
[20,21], where the interface separates a high-speed boundary layer 
from a chemically-reacting porous material, this formalism is needed to 
estimate the surface recession velocity under the assumption of chemi-

cal equilibrium at the interface. The convenience of the formulation lies 
in its computational simplicity, and in the fact that, under several as-

sumptions discussed in sections 3 and 4, the solution of the 𝐵′ equation 
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can be tabulated as a function of surface temperature, surface pressure 
and normalized gas mass flux (hence the common name 𝐵′ tables).

Although the original 𝐵′ formulation is known and implemented 
in ablation codes (e.g., PATO [14] and KATS [26]), to the best of 
the authors’ knowledge, a derivation from first principles is not read-

ily available in the literature. Specifically, the original formulation is 
typically presented starting from an infinitesimally thin control volume 
containing the interface [19,21,1,22,14,2]. In sections 2, 3 and 4 we 
offer an alternative derivation of the 𝐵′ mass and energy balance equa-

tions starting from a jump condition that is derived using the divergence 
and the generalized transport theorems [11], without explicitly requir-

ing an infinitesimally thin control volume. While in sections 3 and 4
we specialize to boundary layers with unity Lewis numbers (as com-

monly done in the literature), the jump condition presented in section 2

is general enough that it can be applied to any boundary layer model. 
This way, we elucidate the nature of the 𝐵′ formalism and identify the 
underlying assumptions that are built into it.

In section 5 we use the derivation presented in the first half of the 
manuscript to extend the 𝐵′ formulation to include bidirectional mass 
flux across the interface. In its original form, the 𝐵′ formulation assumes 
unidirectional advective transport of gaseous mass from the porous ma-

terial to the boundary layer (i.e., blowing). (This corresponds to 𝐵′
𝑔 > 0

in the notation of section 3.) This is because the formulation is often 
used to simulate the response of pyrolyzing porous materials [20,14,3]

that exhibit internal pressures that are often higher than the pressure 
inside the boundary layer (thereby leading to blowing). However, there 
can be cases where, even in the presence of pyrolysis, the pressure 
differential is such that there is a net inflow of gases into the porous 
material (𝐵′

𝑔 < 0). In computational codes that treat the porous materi-

al’s gases as a time-varying (equilibrium/non-equilibrium) mixture, the 
inflow of boundary layer gases into the material can be easily accounted 
for via a species Dirichlet boundary condition at the surface [16]. Con-

versely, when the gases composition is taken to be constant (i.e., when 
there is no species tracking), existing codes (e.g., PATO [14], CHyPS 
[3]) typically choose to neglect the effect of the inflow of gases on the 
surface thermodynamics by setting 𝐵′

𝑔 = 0. We shall see, however, that 
enforcing 𝐵′

𝑔 = 0 can have a non-negligible effect on the surface ther-

modynamics and on the surface recession velocity. Section 5 presents 
an extension to the 𝐵′ formalism that allows for 𝐵′

𝑔 < 0 even when the 
gases in the porous material are treated as a constant mixture. First and 
foremost, this extension has the same computational cost as the origi-

nal formulation and, just like the latter, it allows for the 𝐵′ equations 
to be tabulated a priori. Second, it is constructed such that the nor-

malized recession rate (𝐵′
𝑐 in the notation of section 3) is a continuous 

function of the blowing/aspiration rate 𝐵′
𝑓 𝑙

. Finally, we identify blow-

ing/aspiration regimes where the recession rate is either independent 
of the blowing/aspiration rate, or a linear function of the latter. This 
analysis shows that if the mass flux of gases into the porous material 
is sufficiently high, its impact on the surface recession velocity is non-

negligible. This is demonstrated via examples in section 6, where we 
show that the modified formulation predicts recession velocities that 
are always equal to or greater than the recession velocities predicted by 
the classical 𝐵′ formulation.

The steps required to implement this formulation in existing mate-

rial response codes are compactly outlined in Algorithm 1 in section 5. 
Moreover, the interested reader may generate the modified 𝐵′ tables 
using the scripts that are publicly available in the repository https://

github .com /albertopadovan /Modified _Bprime. The 𝐵′ tables generated 
by these scripts should be compatible with the material response code 
CHyPS [3] without modification, and with PATO [14] with little to no 
modification.

2. Jump condition of a conserved quantity

In this section we follow the approach of Keller [11] to derive the 
2

jump condition of a conserved quantity 𝜑 across a singular surface 
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Fig. 1. Schematic of a general control volume  =  (𝑓 ) ∪  (𝑝) containing the 
interface  between a porous material and a fluid. Superscripts (𝑓 ) and (𝑝)
denote the fluid and porous material’s sides, respectively. A description of the 
variables is given at the beginning of section 2.

where 𝜑 is discontinuous. Throughout, we use the general control vol-

ume  =  (𝑝) ∪  (𝑓 ) ⊆ ℝ3 depicted in Fig. 1, where the superscripts (𝑝)
and (𝑓 ) denote the two sides of the control volume that are separated 
by the singular interface . In applications of interest, the (𝑝)-side will 
contain a volume of porous material, while the (𝑓 )-side will contain a 
volume of fluid. The external surfaces of the control volume are de-

noted by  , and 𝐧 ∈ℝ3 denotes the unit-norm outward-pointing vector 
normal to the surface.

In multi-physics problems, the spatio-temporal dynamics of con-

served quantities are typically governed by partial differential equations 
defined on either side of the interface . For a general quantity 𝜑(𝐱, 𝑡), 
the conservation equations in differential conservative form (and Ein-

stein notation) may read

⎧⎪⎪⎨⎪⎪⎩

𝜕𝜑(𝑓 )

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜑(𝑓 )𝑢(𝑓 )

𝑖

)
= 𝜕

𝜕𝑥𝑖

𝜉
(𝑓 )
𝑖

+ 𝜓 (𝑓 ), 𝐱 ∈  (𝑓 ),

𝜕𝜑(𝑝)

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜑(𝑝)𝑢(𝑝)

𝑖

)
= 𝜕

𝜕𝑥𝑖

𝜉
(𝑝)
𝑖

+ 𝜓 (𝑝), 𝐱 ∈  (𝑝).

(1)

(2)

Here, 𝑢𝑖 denotes the 𝑖th component of the transport velocity vector, 𝜓
denotes a volumetric source term and 𝜉𝑖 denotes the 𝑖th component of 
additional terms (e.g., the viscous terms in the momentum equation, or 
viscous dissipation in the energy equation). Equations (1) and (2) are 
well-posed on  (𝑓 ) and  (𝑝), respectively, where 𝜑 is differentiable with 
respect to 𝐱, but they do not hold on the interface, where 𝜑 typically 
exhibits a discontinuity. Understanding this discontinuity, and deriving 
the corresponding jump condition, is at the heart of imposing the cor-

rect boundary conditions in computational codes that run multi-physics 
simulations.

In order to derive the jump condition, we turn to the integral form 
of the conservation equations. In particular, the conservation equation 
over  (𝑓 ) is given by

𝑑

𝑑𝑡 ∫
 (𝑓 )

𝜑(𝑓 )𝑑 (𝑓 ) + ∫
(𝑓 )

[
𝜑(𝑓 )

(
𝑢
(𝑓 )
𝑖

− 𝑣(𝑓 )
𝑖

)
− 𝜉

(𝑓 )
𝑖

]
𝑛(𝑓 )

𝑖 𝑑 (𝑓 )

+ ∫


[
𝜑(𝑓 )

(
𝑢
(𝑓 )
𝑖

− 𝑣𝑖
)
− 𝜉

(𝑓 )
𝑖

]
𝑛(𝑓 )𝑖 𝑑 = ∫

 (𝑓 )

𝜓 (𝑓 )𝑑 (𝑓 ),

(3)

where 𝑣𝑖 is the 𝑖th component of the surface velocity vector, and 𝑛𝑖 is 
the 𝑖th component of the outward-pointing normal vector. Using the 
generalized transport theorem on the time-rate-of-change term in (3), 
and making use of the divergence theorem, it can be checked that equa-

tions (3) and (1) are indeed equivalent. The conservation equation over 

 (𝑝) is analogous to (3), with superscripts (𝑝).

https://github.com/albertopadovan/Modified_Bprime
https://github.com/albertopadovan/Modified_Bprime
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We proceed by considering the integral form of the conservation 
equation for 𝜑 over the whole control volume  ,

𝑑

𝑑𝑡

{
∫

 (𝑓 )

𝜑(𝑓 )𝑑 (𝑓 ) + ∫
 (𝑝)

𝜑(𝑝)𝑑 (𝑝)
}

+ ∫
(𝑓 )

[
𝜑(𝑓 )

(
𝑢
(𝑓 )
𝑖

− 𝑣(𝑓 )
𝑖

)
− 𝜉

(𝑓 )
𝑖

]
𝑛(𝑓 )

𝑖 𝑑 (𝑓 )

+ ∫
(𝑝)

[
𝜑(𝑝)

(
𝑢
(𝑝)
𝑖

− 𝑣(𝑝)
𝑖

)
− 𝜉

(𝑝)
𝑖

]
𝑛(𝑝)

𝑖 𝑑 (𝑝) = ∫
 (𝑓 )

𝜓 (𝑓 )𝑑 (𝑓 )

+ ∫
 (𝑝)

𝜓 (𝑝)𝑑 (𝑝) + ∫


𝜓𝑑.

(4)

In writing equation (4), we make two assumptions. First, we do not al-

low for any accumulation of quantity 𝜑 on the interface . (This would 
appear as the time-rate of change of the surface integral of 𝜑 along 
.) Second, we treat  as a reactive interface, which is allowed to cre-

ate/destroy some amount of 𝜑 via the surface source term 𝜓 . These are 
modeling assumptions that can, in principle, be relaxed. For instance, 
an example of a more involved interface model can be found in [28], 
where the author considers a finite-thickness interface that is allowed 
to accumulate mass. Subtracting formula (3) and its analog over  (𝑝)

from (4), and imposing point-wise equality, the desired jump condition 
reads[

𝜑(𝑓 )
(

𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
− 𝜉

(𝑓 )
𝑖

]
𝑛𝑖 −

[
𝜑(𝑝)

(
𝑢
(𝑝)
𝑖

− 𝑣𝑖

)
𝑛𝑖 − 𝜉

(𝑝)
𝑖

]
𝑛𝑖 = 𝜓 , (5)

where we have used 𝑛𝑖 ∶= 𝑛(𝑝)
𝑖

= −𝑛(𝑓 )
𝑖

, and we have dropped the su-

perscript  on 𝑣𝑖 for notational simplicity. In the next sections, we will 
use (5) to derive the mass and energy jump conditions at an ablating 
surface.

3. 𝑩′ formulation from first principles: conservation of mass

We use the results from the previous section to derive the well-

known 𝐵′ mass balance equation. In doing so, we elucidate the nature 
of the 𝐵′ formulation and we identify all its underlying assumptions.

3.1. Conservation of mass at an ablating surface

Moving forward, we specialize to the case of an ablating surface at 
the interface between a porous material and a fluid. We let the porous 
material occupy the  (𝑝) region of the control volume in Fig. 1, while 
the fluid occupies the  (𝑓 ) side. If the fluid is a reacting mixture of 𝑁𝑠

species, the differential form of the continuity equation for species 𝑘 is 
given by

𝜕𝜌
(𝑓 )
𝑘

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌
(𝑓 )
𝑘

𝑢
(𝑓 )
𝑘,𝑖

)
= 𝜓

(𝑓 )
𝑘

, 𝑘 ∈ {1,2,… , 𝑁𝑠}, (6)

where 𝜌𝑘 and 𝑢𝑘,𝑖 are the density and 𝑖th component of the velocity 
associated with species 𝑘, and 𝜓𝑘 is a volumetric source term due to the 
reacting nature of the mixture. For future reference, we also define the 
mixture density 𝜌(𝑓 ) and the mixture bulk velocity 𝑢(𝑓 )

𝑖
by [6]

𝜌(𝑓 ) =
𝑁𝑠∑
𝑘=1

𝜌
(𝑓 )
𝑘

, 𝑢
(𝑓 )
𝑖

= 1
𝜌(𝑓 )

𝑁𝑠∑
𝑘=1

𝜌
(𝑓 )
𝑘

𝑢
(𝑓 )
𝑘,𝑖

. (7)

The governing equations for the porous material will be treated in 
a volume-averaged sense. Let the porous material be made of a solid 
phase and a gaseous mixture with 𝑁𝑠 species. In applications of inter-

est, the porous material is typically made up of several solid phases, but 
for the current discussion it suffices to consider one. Additional solid 
phases can be considered with minimal change. Conservation of mass 
of species 𝑘 within the porous material requires that equation (6) be 
3

satisfied (with all superscripts (𝑓 ) converted to (𝑝)), where the source 
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term 𝜓 (𝑝)
𝑘

may now account for both homogeneous and heterogeneous 
reactions. The averaging theorem [27] and the modified averaging the-

orem [7] allow us to volume-average equation (6) over a representative 
elemental volume 𝑉 to obtain

𝜕

𝜕𝑡

(
𝜀𝑔⟨𝜌𝑘⟩(𝑔))+ 𝜕

𝜕𝑥𝑖

(
𝜀𝑔⟨𝜌𝑘⟩(𝑔)⟨𝑢𝑘,𝑖⟩(𝑔)) = ⟨𝜓𝑘⟩(𝑔). (8)

Here, 𝜀𝑔 is the volume fraction occupied by the mixture within the rep-

resentative volume 𝑉 , and ⟨𝜌𝑘⟩(𝑔) is the intrinsic volume average of 𝜌𝑘

[8]. In the interest of clarity, we stress that the representative elemental 
volume 𝑉 is not related to  in Fig. 1. A schematic of 𝑉 can be found, 
for instance, in [8]. It is also important to remark that (8) is not exact. In 
fact, the averaging procedure leads to unclosed terms that are typically 
neglected, either due to physically-justifiable reasons, or to the impos-

sibility of properly closing them (see equation (24) in [8]). Once again, 
for future reference, we let ⟨𝜌⟩(𝑔) and ⟨𝑢𝑖⟩(𝑔) be the volume-averaged 
mixture density and mixture bulk velocity, defined analogously to (7). 
Finally, the volume-averaged conservation of solid mass reads

𝜕

𝜕𝑡

(
𝜀𝑠⟨𝜌⟩(𝑠)) = ⟨𝜓𝑠⟩(𝑠), (9)

where 𝜀𝑠 = 1 − 𝜀𝑔 is the volume fraction occupied by the solid. In order 
to guarantee that, within  (𝑝), the sum of mixture mass and solid mass 
is conserved in the absence of mass fluxes through the boundaries, the 
source terms are usually taken to satisfy

⟨𝜓𝑠⟩(𝑠) + 𝑁𝑠∑
𝑘=1

⟨𝜓𝑘⟩(𝑔) = 0. (10)

3.1.1. Conservation of mass of gaseous species 𝑘
We now return to our control volume  in Fig. 1. Per our previous 

discussion, conservation of mass of species 𝑘 in the  (𝑓 ) region of the 
control volume is governed by (6), while conservation of mass of species 
𝑘 in the  (𝑝) region is governed in a volume-averaged sense by (8). The 
jump condition in (5) can be used directly, and it reads

𝜌
(𝑓 )
𝑘

(
𝑢
(𝑓 )
𝑘,𝑖

− 𝑣𝑖

)
𝑛𝑖 − 𝜀𝑔⟨𝜌𝑘⟩(𝑔) (⟨𝑢𝑘,𝑖⟩(𝑔) − 𝑣𝑖

)
𝑛𝑖 = 𝜓

𝑘
, (11)

where 𝜓
𝑘

is the rate of production (per unit area) of species 𝑘 due to 
reactions at the interface. In ablation applications, this production term 
models the heterogeneous reactions through which the solid phase of 
the porous material is converted into gaseous mass (thereby causing 
surface recession). This will become clear in the next section 3.1.2.

3.1.2. Conservation of solid mass

As in the previous section 3.1.1, we can apply the interface balance 
equation (5) directly. Since there is no solid phase in the  (𝑓 ) region of 
the control volume  , and (9) governs the volume-averaged continuity 
of solid mass in the  (𝑝) region, equation (5) reduces to

𝜀𝑠⟨𝜌⟩(𝑠)𝑣𝑖𝑛𝑖 = 𝜓
𝑠 . (12)

This equation states that the surface velocity 𝑣𝑖𝑛𝑖 of the interface 
is proportional to 𝜓

𝑠 , where, in ablation applications, 𝜓
𝑠 can be un-

derstood as the time-rate of change per unit area of solid mass lost to 
gaseous mass via heterogeneous reactions. As a sanity check, if solid 
mass is being lost to gaseous mass (e.g., during ablation), then 𝜓

𝑠 < 0, 
so 𝑣𝑖𝑛𝑖 < 0. Since by convention 𝑛𝑖 = 𝑛(𝑝)

𝑖
, this means that the surface is 

receding (see Fig. 1), as expected.

3.2. The 𝐵′ mass balance

The 𝐵′ equation for mass conservation is derived from (11) after a 
number of assumptions that we will outline shortly. Before proceeding 
we remark that the assumptions outlined herein may or may not be 
physically justified. We are merely making them in order to obtain the 

𝐵′ mass balance equation from (11).
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By adding and subtracting 𝜌
(𝑓 )
𝑘

𝑢
(𝑓 )
𝑖

and 𝜀𝑔⟨𝜌𝑘⟩(𝑔)⟨𝑢𝑖⟩(𝑔) to (11), and 
using the fact that 𝜌𝑘 = 𝑧𝑘𝜌, where 𝑧𝑘 is the mass fraction of species 𝑘, 
equation (11) can be written as

𝐽
(𝑓 )
𝑘,𝑖

𝑛𝑖 + 𝑧
(𝑓 )
𝑘

𝜌(𝑓 )
(

𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
𝑛𝑖 = 𝐽

(𝑔)
𝑘,𝑖

𝑛𝑖 + 𝜀𝑔𝑧
(𝑔)
𝑘
⟨𝜌⟩(𝑔) (⟨𝑢𝑘,𝑖⟩(𝑔) − 𝑣𝑖

)
𝑛𝑖 + 𝜓

𝑘
,

(13)

where 𝐽𝑘,𝑖 are mass diffusion terms defined as

𝐽
(𝑓 )
𝑘,𝑖

= 𝜌
(𝑓 )
𝑘

(
𝑢
(𝑓 )
𝑘,𝑖

− 𝑢
(𝑓 )
𝑖

)
, 𝐽

(𝑔)
𝑘,𝑖

= 𝜀𝑔⟨𝜌𝑘⟩(𝑔) (⟨𝑢𝑘,𝑖⟩(𝑔) − ⟨𝑢𝑖⟩(𝑔)) . (14)

In order to arrive at the well-known 𝐵′ equation, the following assump-

tions need to be made. First, mass diffusion on the porous material’s side 
of the interface (i.e., 𝐽 (𝑝)

𝑘,𝑖
𝑛𝑖) is neglected. The mass diffusion term on the 

fluid’s side of the interface is modeled via correlation (or transfer po-

tential) as 𝐽 (𝑓 )
𝑘,𝑖

= 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀

(
𝑧
(𝑓 )
𝑘

− 𝑧
(𝑒)
𝑘

)
, where 𝑆𝑡𝑀 is the mass-transfer 

Stanton number, and the subscript/superscript “e” denotes boundary 
layer edge quantities [6]. While more detailed mass diffusion models 
can be considered [12,15], the transfer potential model considered here 
is the simplest, and it relies on the assumption that all species share the 
same mass diffusion coefficient (see also Appendix B). Putting this all 
together, equation (13) becomes

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀

(
𝑧
(𝑓 )
𝑘

− 𝑧
(𝑒)
𝑘

)
𝑛𝑖 + 𝑧

(𝑓 )
𝑘

𝜌(𝑓 )
(

𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
𝑛𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝑚̇(𝑓 )

= 𝑧
(𝑔)
𝑘

𝜀𝑔⟨𝜌⟩(𝑔) (⟨𝑢𝑖⟩(𝑔) − 𝑣𝑖

)
𝑛𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝑚̇(𝑔)

+𝜓
𝑘

.

(15)

In order to obtain the 𝐵′ equation that is commonly presented in the 
literature (and implemented in computational codes), we first need to 
convert (15) to its analog in terms of elements rather than species. Under 
the assumption of equal diffusion coefficients (so that the definition of 
𝑆𝑡𝑀 remains unchanged), it is straightforward to see that equation (15)

can be transformed into

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀

(
𝑦
(𝑓 )
𝑘

− 𝑦
(𝑒)
𝑘

)
𝑛𝑖 + 𝑦

(𝑓 )
𝑘

𝑚̇(𝑓 ) = 𝑦
(𝑔)
𝑘

𝑚̇(𝑔) + 𝜒
𝑘

, 𝑘 ∈ {1,2,… , 𝑁𝑒𝑠},

(16)

where 𝑦𝑘 is the mass fraction of element 𝑘 in the mixture, 𝑁𝑒𝑠 is the 
number of elements, and 𝜒

𝑘
is the surface source term analogous to 𝜓

𝑘
. 

At this point we are ready to make the final assumption that ultimately 
leads to the 𝐵′ equation. Specifically, we write the source term 𝜒

𝑘
as 

𝜒
𝑘
= 𝜒

𝑘𝐶
𝛿𝑘,𝑘𝐶

, where 𝛿𝑘,𝑘𝐶
is the Kronecker delta and 𝑘𝐶 ∈ {1, 2, … , 𝑁𝑒𝑠}

is the index pointing to monatomic carbon gas. Physically, this means 
that the only non-trivial reaction promoted by the interface  is the 
heterogeneous conversion of solid phase into carbon gas.

Dividing through by 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀 𝑛𝑖, the formula above yields the de-

sired 𝐵′ mass-balance equation

𝑦
(𝑓 )
𝑘

− 𝑦
(𝑒)
𝑘

+ 𝑦
(𝑓 )
𝑘

𝐵′
𝑓 𝑙

= 𝑦
(𝑔)
𝑘

𝐵′
𝑔 + 𝐵′

𝑐 𝛿𝑘,𝑘𝐶
, 𝑘 ∈ {1,2… , 𝑁𝑒𝑠}, (17)

where 𝐵′
𝑔 = 𝑚̇(𝑔)∕ 

(
𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀 𝑛𝑖

)
, 𝐵′

𝑐 = 𝜒
𝑘𝐶

∕ 
(

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡𝑀 𝑛𝑖

)
and 𝐵′

𝑓 𝑙
is de-

fined analogously with 𝑚̇(𝑓 ) on the numerator.1 Due to the assumption 
that the solid phase is converted exclusively into carbon gas, we observe 
that 𝜒

𝑘𝐶
= −𝜓

𝑠 , so that, using (12), 𝐵′
𝑐 may be expressed as

𝐵′
𝑐 = −

𝜀𝑠⟨𝜌⟩(𝑠)𝑣𝑖𝑛𝑖

𝜌𝑒𝑢𝑒,𝑖𝑛𝑖𝑆𝑡𝑀

. (18)

(In ablation applications, we have 𝐵′
𝑐 ≥ 0, since 𝑣𝑖𝑛𝑖 ≤ 0 as discussed in 

section 3.1.2.) For future reference, we also observe that by summing 

1 An anonymous reviewer has kindly pointed out that 𝐵′
𝑓

is typically used 
to identify the rate of material removal due to mechanical failure/erosion. We 
4

therefore use 𝐵′
𝑓 𝑙

throughout the paper to refer to the blowing/aspiration rate.
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(17) over all 𝑘 and using the fact that mass fractions sum to 1, we have 
𝐵′

𝑓 𝑙
= 𝐵′

𝑔 + 𝐵′
𝑐 .

4. 𝑩′ formulation from first principles: conservation of energy

Here, we follow the same reasoning as in the previous section, and 
we derive the 𝐵′ energy-balance equation at a reacting interface. For 
this purpose, we consider, once more, the control volume depicted in 
Fig. 1.

4.1. Conservation of energy at an ablating surface

We begin by stating the partial differential equation that governs 
the conservation of energy on the fluid’s side of the interface  (see 
Fig. 1). As in the previous sections, we consider an ideal gas mixture of 
𝑁𝑠 species. Letting 𝐸 = 𝑒 + (1∕2)𝑢𝑖𝑢𝑖 denote the total (mixture) energy, 
with 𝑒 the internal energy, the energy equation on the (𝑓 )-side of the 
control volume can be written as

𝜕

𝜕𝑡

(
𝜌(𝑓 )𝐸(𝑓 ))+ 𝜕

𝜕𝑥𝑖

(
𝜌(𝑓 )𝐸(𝑓 )𝑢(𝑓 )

𝑖

)
= 𝜕

𝜕𝑥𝑖

(
𝑢
(𝑓 )
𝑗

𝜏
(𝑓 )
𝑖,𝑗

− 𝑝(𝑓 )𝑢(𝑓 )
𝑖

+ 𝜅(𝑓 ) 𝜕𝑇 (𝑓 )

𝜕𝑥𝑖

+(𝑓 )
𝑖

)
,

(19)

where

(𝑓 )
𝑖

= −𝑢
(𝑓 )
𝑗

𝑁𝑠∑
𝑘=1

𝜌
(𝑓 )
𝑘

𝑤
(𝑓 )
𝑘,𝑖

𝑤
(𝑓 )
𝑘,𝑗

−
𝑁𝑠∑
𝑘=1

ℎ
(𝑓 )
𝑘

𝐽
(𝑓 )
𝑘,𝑖

−
𝑁𝑠∑
𝑘=1

1
2

𝑤
(𝑓 )
𝑘,𝑗

𝑤
(𝑓 )
𝑘,𝑗

𝐽
(𝑓 )
𝑘,𝑖

+
𝑁𝑠∑
𝑘=1

𝑤
(𝑓 )
𝑘,𝑗

𝜏
(𝑓 )
𝑘,𝑖,𝑗

.

(20)

Here, 𝑇 is the temperature, 𝜅 is the heat conduction coefficient, 𝑤𝑘,𝑖 ∶=
𝑢𝑘,𝑖 − 𝑢𝑖 is the velocity of species 𝑘 relative to the mixture velocity, 𝐽 (𝑓 )

𝑘,𝑖

is defined in (14), and 𝜏𝑖,𝑗 =
∑𝑁𝑠

𝑘=1 𝜏𝑘,𝑖,𝑗 is the shear stress tensor. We 
refer the reader to [24] for a formal derivation of (19) for an inviscid 
ideal gas mixture with zero thermal conductivity.

On the (𝑝)-side of the control volume, occupied by the porous mate-

rial, the energy equation is often approximated as [3]

𝜕

𝜕𝑡

(
𝜀𝑔⟨𝜌⟩(𝑔)⟨𝑒⟩(𝑔) + 𝜀𝑠⟨𝜌⟩(𝑠)⟨ℎ⟩(𝑠))+ 𝜕

𝜕𝑥𝑖

(
𝜀𝑔⟨𝜌⟩(𝑔)⟨ℎ⟩(𝑔)⟨𝑢𝑖⟩(𝑔))

= 𝜕

𝜕𝑥𝑖

(
𝜅(𝑝) 𝜕⟨𝑇 ⟩

𝜕𝑥𝑖

)
.

(21)

Here, ℎ denotes the enthalpy and, as in the previous section, we re-

call that ⟨⋅⟩ denotes the intrinsic volume average. The quantity ⟨𝑇 ⟩ is 
the volume-averaged temperature of the porous material under the as-

sumption of thermal equilibrium between the gaseous phase and the 
solid phase, and 𝜅(𝑝) is the corresponding heat conduction coefficient. 
Equation (21) can be obtained from first principles by volume-averaging 
the energy equations for the gaseous and solid phases of the porous ma-

terial. It should be observed that unclosed terms and several other terms 
are neglected during the volume-averaging process, but it is beyond the 
scope of this paper to provide details on the formal derivation of (21). 
We refer the reader to, e.g., [27] and [8] for details. A noteworthy 
observation is that (21) omits the contribution of the volume-averaged 
kinetic energy of the gaseous phase (superscript (𝑔)) to the total volume-

averaged energy of the porous material. This has been found to be 
negligible if the gas exhibits velocities below 100 m∕s [17].

4.2. The 𝐵′ energy balance

We now derive the 𝐵′ equation for energy conservation across the 
interface . As in section 3.2, we stress the fact that the assumptions 
outlined herein may or may not be physically justified. These are made 
merely to obtain the 𝐵′ energy equation that is used in existing material 

response codes.
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Invoking (5) alongside equations (19) and (21), the energy jump 
condition across the surface  reads,(

𝜌(𝑓 )𝐸(𝑓 )
(

𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
+ 𝑝(𝑓 )𝑢(𝑓 )

𝑖
− 𝑢

(𝑓 )
𝑗

𝜏
(𝑓 )
𝑖,𝑗

− 𝜅(𝑓 ) 𝜕𝑇 (𝑓 )

𝜕𝑥𝑖

−(𝑓 )
𝑖

)
𝑛𝑖

−
(

𝜀𝑔⟨𝜌⟩(𝑔)⟨ℎ⟩(𝑔) (⟨𝑢𝑖⟩(𝑔) − 𝑣𝑖

)
− 𝜅(𝑝) 𝜕⟨𝑇 ⟩

𝜕𝑥𝑖

− 𝜀𝑠⟨𝜌⟩(𝑠)⟨ℎ⟩(𝑠)𝑣𝑖

)
𝑛𝑖 =Δ𝑞rad,

(22)

where we recall that 𝑣𝑖 denotes the interface velocity and 𝑛𝑖 = 𝑛(𝑝)
𝑖

(see 
Fig. 1). The term Δ𝑞rad denotes the radiative heat transfer at the inter-

face . This is modeled as an interfacial source term that is analogous 
in spirit to the term 𝜓 in (5).

In order to obtain the 𝐵′ energy balance, we proceed as follows. 
Using the fact that 𝐸(𝑓 ) = ℎ(𝑓 ) − 𝑝(𝑓 )∕𝜌(𝑓 ) + (1∕2)𝑢(𝑓 )

𝑖
𝑢
(𝑓 )
𝑖

and neglect-

ing terms, the first and second terms in the first row of (22) become 
𝜌(𝑓 )ℎ(𝑓 )

(
𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
. We then neglect 𝑢

(𝑓 )
𝑗

𝜏
(𝑓 )
𝑖,𝑗

and all terms in (𝑓 )
𝑖

(see 
equation (20)) except for the second term (i.e., the enthalpy diffusion 
flux). This can be justified using the boundary layer approximation 
discussed in Eckert [6]. Letting 𝑆𝑡𝐻 denote the heat-transfer Stanton 
number, and taking 𝑆𝑡 ∶= 𝑆𝑡𝑀 = 𝑆𝑡𝐻 (i.e., assuming unity Lewis num-

ber), we may write

−𝜅(𝑓 ) 𝜕𝑇 (𝑓 )

𝜕𝑥𝑖

+
𝑁𝑠∑
𝑘=1

ℎ
(𝑓 )
𝑘

𝐽
(𝑓 )
𝑘,𝑖

= 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡
(

ℎ(𝑓 ) − ℎ(𝑒)) , (23)

where we recall that superscript/subscript “e” denotes boundary layer 
edge quantities. While the relationship between unity Lewis number 
and equal Stanton numbers is well-known and discussed in the litera-

ture (see, e.g., [9,5]), we present a short derivation in Appendix B to 
make the manuscript more self-contained. Equation (23) may be under-

stood as a transfer potential model for heat transfer by convection and 
diffusion, similar in spirit to the model used to approximate 𝐽𝑘,𝑖 in (14). 
Putting this all together, we obtain

𝜌(𝑓 )ℎ(𝑓 )
(

𝑢
(𝑓 )
𝑖

− 𝑣𝑖

)
𝑛𝑖 + 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡

(
ℎ(𝑓 ) − ℎ(𝑒))𝑛𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝑞conv

= 𝜀𝑔⟨𝜌⟩(𝑔)⟨ℎ⟩(𝑔) (⟨𝑢𝑖⟩(𝑔) − 𝑣𝑖

)
𝑛𝑖 − 𝜅(𝑝) 𝜕⟨𝑇 ⟩

𝜕𝑥𝑖

𝑛𝑖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∶=𝑞cond

−𝜀𝑠⟨𝜌⟩(𝑠)𝑣𝑖⟨ℎ⟩(𝑠)𝑛𝑖 +Δ𝑞rad.

(24)

This is precisely the energy balance equation displayed, e.g., in [14]. 
Dividing through by 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖, and recalling the definitions of 𝐵′

𝑔 , 𝐵′
𝑓 𝑙

and 𝐵′
𝑐 in the previous section, the equation above yields the desired 𝐵′

energy balance

ℎ(𝑓 ) − ℎ(𝑒) + 𝐵′
𝑓 𝑙

ℎ(𝑓 ) = 𝐵′
𝑔⟨ℎ⟩(𝑔) − 𝑞cond

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖

+ 𝐵′
𝑐⟨ℎ⟩(𝑠) + Δ𝑞rad

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖

. (25)

When this equation is solved in practice, the only unknown is 𝑞cond, 
which is then used to specify a Neumann boundary condition on the 
temperature field ⟨𝑇 ⟩.
5. Extension of the 𝑩′ formulation

Despite all the assumptions made in the previous section, the result-

ing 𝐵′ formulation should hold for any (positive or negative) values 
of 𝐵′

𝑔 and 𝐵′
𝑓 𝑙

. Nonetheless, material response codes and thermody-

namics/chemical libraries [14,25] only consider the case 𝐵′
𝑔 ≥ 0. Using 

the control volume in Fig. 1, we can see that this corresponds to the 
case where porous material gases are advected towards the interface 
 and, by mass conservation, when boundary layer gases are advected 
away from the interface. This scenario is commonly referred to as blow-

ing. However, it is certainly possible that the opposite scenario occurs, 
5

where boundary layer gases are advected towards the interface (i.e., 
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aspiration) and porous material gases are advected away from the in-

terface. In this section, we propose a unified 𝐵′ formulation capable of 
addressing all these scenarios. Moving forward, mass fractions 𝑦𝑘 are to 
be understood as elemental mass fractions.

We begin by modifying the transfer potential models used in the 
original formulation. In particular, we write

𝐽
(𝑓 )
𝑘,𝑖

=
⎧⎪⎨⎪⎩

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡
(

𝑦
(𝑓 )
𝑘

− 𝑦
(𝑒)
𝑘

)
if 𝐵′

𝑓 𝑙
≥ 0

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡
(

𝑦
(𝑔)
𝑘

− 𝑦
(𝑒)
𝑘

)
if 𝐵′

𝑓 𝑙
< 0,

(26)

and

−𝜅(𝑓 ) 𝜕𝑇 (𝑓 )

𝜕𝑥𝑖

+
𝑁𝑠∑
𝑘=1

ℎ
(𝑓 )
𝑘

𝐽
(𝑓 )
𝑘,𝑖

=

{
𝜌𝑒𝑢𝑒,𝑖𝑆𝑡

(
ℎ(𝑓 ) − ℎ(𝑒)) if 𝐵′

𝑓 𝑙
≥ 0

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡
(

ℎ(𝑔) − ℎ(𝑒)) if 𝐵′
𝑓 𝑙

< 0.
(27)

Here, we observe that the need to distinguish between 𝐵′
𝑓 𝑙

≥ 0 and 𝐵′
𝑓 𝑙

<

0 in (26) and (27) is merely due to notation. Specifically, we shall see 
momentarily that when 𝐵′

𝑓 𝑙
≥ 0, 𝑦

(𝑓 )
𝑘

are the unknown mass fractions 
that can be computed via Gibbs free energy minimization under the 
assumption of chemical equilibrium at the wall. Conversely, when 𝐵′

𝑓 𝑙
<

0, the equilibrium mass fractions are 𝑦(𝑔)
𝑘

. Thus, (26) can be understood 
as a transfer potential model expressed in terms of the equilibrium mass 
fractions at the wall. This interpretation makes (26) fully consistent 
with the transfer potential model presented in [6]. The same argument 
holds for the model in (27).

Given the models (26) and (27), the corresponding 𝐵′ mass and 
energy balance equations read

⎧⎪⎪⎨⎪⎪⎩
𝜉𝑘 − 𝑦

(𝑒)
𝑘

+ 𝑦
(𝑓 )
𝑘

𝐵′
𝑓 𝑙

= 𝑦
(𝑔)
𝑘

𝐵′
𝑔 + 𝐵′

𝑐 𝛿𝑘,𝑘𝐶
, 𝑘 ∈ {1,2,… , 𝑁𝑒𝑠}

𝜂 − ℎ(𝑒) + 𝐵′
𝑓 𝑙

ℎ(𝑓 ) = 𝐵′
𝑔⟨ℎ⟩(𝑔) + Δ𝑞rad − 𝑞cond

𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖

+ 𝐵′
𝑐⟨ℎ⟩(𝑠)

(28)

(29)

where

𝜉𝑘 =

{
𝑦
(𝑓 )
𝑘

if 𝐵′
𝑓 𝑙

≥ 0
𝑦
(𝑔)
𝑘

if 𝐵′
𝑓 𝑙

< 0
, 𝜂 =

{
ℎ(𝑓 ) if 𝐵′

𝑓 𝑙
≥ 0

ℎ(𝑔) if 𝐵′
𝑓 𝑙

< 0.
(30)

In particular, we see that when 𝐵′
𝑓 𝑙

≥ 0, equations (28) and (29) agree 
with (17) and (25). Moreover, we will see that the form of (28) and (29)

(inherited from the transfer potential models in (26) and (27)) is such 
that the unknown equilibrium mass fractions and normalized surface re-

cession rate 𝐵′
𝑐 are continuous functions of 𝐵′

𝑓 𝑙
. This property provides 

a well-behaved computational model. In the upcoming subsections we 
discuss the two cases 𝐵′

𝑓 𝑙
≥ 0 and 𝐵′

𝑓 𝑙
< 0 in detail.

5.1. 𝐵′
𝑓 𝑙

≥ 0 case

This scenario corresponds to boundary layer gases being advected 
away from the interface  in Fig. 1. Recalling that 𝐵′

𝑓 𝑙
= 𝐵′

𝑔 + 𝐵′
𝑐 , we 

distinguish between two different subcases: 𝐵′
𝑓 𝑙

> 𝐵′
𝑐 and 0 ≤ 𝐵′

𝑓 𝑙
≤ 𝐵′

𝑐 .

5.1.1. 𝐵′
𝑓 𝑙

> 𝐵′
𝑐

In this case, 𝐵′
𝑔 > 0, meaning that porous material gases are advected 

towards the interface  in Fig. 1. This is the one and only case consid-

ered in the classical 𝐵′ formulation. Here, the unknowns in (28) are 
the mass fractions 𝑦(𝑓 )

𝑘
and 𝐵′

𝑐 . In general, the unknown mass fractions 
are those associated with the mixture (superscripted either with (𝑓 ) or 
(𝑔)) that is being advected away from the interface. Since we have less 
equations than unknowns, solvability is achieved by assuming chemical 
equilibrium of the species at the interface. Under this assumption, the 
mass fractions 𝑦

(𝑓 )
𝑘

at equilibrium can be computed straightforwardly as 
a function of pressure, temperature and 𝐵′

𝑔 via Gibbs free energy min-

imization [23,25]. The temperature and pressure are readily available 

from the boundary conditions, or they can be computed internally by 
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the material response code. Likewise, 𝐵′
𝑔 can be computed internally 

from ⟨𝑢𝑖⟩(𝑔)𝑛𝑖 at the surface. While it is clear from thermodynamics that 
the equilibrium composition of a mixture is a function of pressure and 
temperature, it is helpful to clarify the role of 𝐵′

𝑔 in this specific appli-

cation.

The composition of the equilibrium mixture depends on the initial 
composition of the reactants. In ablation applications, the reactants 
mixture is assumed to be made up of the “edge” elemental mixture 
alongside the porous material gas elemental mixture. The elemental 
composition of the “edge” mixture can always be expressed in terms 
of the mass fractions 𝑦(𝑒)

𝑗
with 𝑗 ∈ {1, 2, … , 𝑁𝑒𝑠} (e.g., 𝑂, 𝐻 , 𝑁 and 𝐶). 

Similarly, the elemental composition of the mixture on the porous mate-

rial side can be expressed as 𝑦(𝑔)
𝑗

with 𝑗 ∈ {1, 2, … , 𝑁𝑒𝑠}. Thus, the mass 
fraction of elemental species 𝑗 in the elemental mixture of reactants is

𝑦reactants
𝑗 =

𝑦
(𝑒)
𝑗

+ 𝐵′
𝑔𝑦

(𝑔)
𝑗∑𝑁𝑒𝑠

𝑘=1

(
𝑦
(𝑒)
𝑘

+ 𝐵′
𝑔𝑦

(𝑔)
𝑘

) . (31)

Clearly, different values of 𝐵′
𝑔 lead to different reactants mixtures, and 

it is therefore clear that the resulting equilibrium mixture will also be a 
function of 𝐵′

𝑔 .

Once the equilibrium mass fractions 𝑦
(𝑓 )
𝑘

are obtained, 𝐵′
𝑐 can be 

obtained directly from (17) using 𝐵′
𝑓 𝑙

= 𝐵′
𝑔 + 𝐵′

𝑐 . In particular, fixing 
𝑘 = 𝑘𝐶 , (where we recall that 𝑘𝐶 is the index pointing to monatomic 
carbon 𝐶), we have

𝐵′
𝑐 =

𝑦
(𝑔)
𝑘

− 𝑦
(𝑓 )
𝑘

𝑦
(𝑓 )
𝑘

− 1
𝐵′

𝑔 +
𝑦
(𝑒)
𝑘

− 𝑦
(𝑓 )
𝑘

𝑦
(𝑓 )
𝑘

− 1
. (32)

The process just described is usually tabulated (i.e., precomputed) as 
a function of pressure, temperature and 𝐵′

𝑔 . Hence the name 𝐵′ table. 
In the energy equation (29), the only unknown is 𝑞cond, which sets a 
Neumann boundary condition for the temperature field, ℎ(𝑓 ) is taken to 
be the enthalpy of the wall equilibrium mixture (given by the 𝐵′ table), 
and ⟨ℎ⟩(𝑔) is taken to be the enthalpy associated with the elemental 
composition on the porous material side of the interface.

5.1.2. 0 ≤ 𝐵′
𝑓 𝑙

≤ 𝐵′
𝑐

In this case, 𝐵′
𝑔 ≤ 0, meaning that porous material gases are advected 

away from the interface . The unknowns in (28) are 𝐵′
𝑐 as well as 𝑦(𝑓 )

𝑘

and 𝑦(𝑔)
𝑘

, since both boundary layer gases and porous material gases are 
being advected away from the interface. Since chemical equilibrium cal-

culations yield one equilibrium mixture, it is clear that 𝑦(𝑓 )
𝑘

= 𝑦
(𝑔)
𝑘

. It is 
worth remarking that while in the previous case the equilibrium mix-

ture was a function of pressure, temperature and 𝐵′
𝑔 , here the mixture 

is only a function of pressure and temperature. In fact, since porous ma-

terial gases are advected away from the interface, the mass fractions of 
the elemental mixture of reactants are given by the elemental “edge” 
composition alone,

𝑦reactants
𝑗 =

𝑦
(𝑒)
𝑗∑𝑁𝑒𝑠

𝑘=1 𝑦
(𝑒)
𝑘

. (33)

Since the reactants mixture does not depend on 𝐵′
𝑔 , the equilibrium mix-

ture will also be independent of 𝐵′
𝑔 . Once the equilibrium mass fractions 

𝑦
(𝑓 )
𝑘

= 𝑦
(𝑔)
𝑘

are computed, (28) gives us (with 𝑘 = 𝑘𝐶 )

𝐵′
𝑐 =

𝑦
(𝑒)
𝑘

− 𝑦
(𝑓 )
𝑘

𝑦
(𝑓 )
𝑘

− 1
=

𝑦
(𝑒)
𝑘

− 𝑦
(𝑔)
𝑘

𝑦
(𝑔)
𝑘

− 1
. (34)

This equation is quite interesting, as it states that in this regime 𝐵′
𝑐 is 

independent of 𝐵′
𝑔 . We can also readily check that if we evaluate (32) at 

𝐵′
𝑔 = 0, this agrees with (34), meaning that 𝐵′

𝑐 is continuous at 𝐵′
𝑓 𝑙

= 𝐵′
𝑐 . 

In the energy equation (29), ℎ(𝑓 ) = ⟨ℎ⟩(𝑔) and they are taken to be equal 
to the enthalpy of the wall equilibrium mixture computed using the 𝐵′
6

table.
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Fig. 2. Schematic (not to scale) of the three 𝐵′
𝑓 𝑙

regimes discussed in section 5. 
Recall that 𝐵′

𝑓 𝑙
= 𝐵′

𝑔
+ 𝐵′

𝑐
. For 𝐵′

𝑓 𝑙
> 𝐵′

𝑐
, the curve is nonlinear due to the non-

linear dependence of 𝐵′
𝑐

on 𝐵′
𝑔

(equation (32)). For 0 ≤ 𝐵′
𝑓 𝑙

≤ 𝐵′
𝑐
, the curve is 

linear with slope 1, since 𝐵′
𝑐

does not depend on 𝐵′
𝑔

(equation (34)). Finally, for 
𝐵′

𝑓 𝑙
< 0, the curve is linear with slope given by (35).

5.2. 𝐵′
𝑓 𝑙

< 0 case

We now consider the case 𝐵′
𝑓 𝑙

< 0, which corresponds to bound-

ary layer gases being advected towards the interface  in Fig. 1. Thus, 
the unknowns in (28) are 𝑦

(𝑔)
𝑘

and 𝐵′
𝑐 . The boundary layer mass frac-

tions 𝑦
(𝑓 )
𝑘

, on the other hand, are set equal to the edge mass fractions 
𝑦
(𝑒)
𝑘

. This is equivalent to assuming a frozen boundary layer, where the 
“edge” elemental composition is equal to the elemental composition in 
close proximity of the wall. By setting 𝑦(𝑓 )

𝑘
= 𝑦

(𝑒)
𝑘

, the equilibrium mix-

ture becomes independent of 𝐵′
𝑔 , and thus only a function of pressure 

and temperature. This can be seen immediately once we observe that 
the reactants mixture is defined by equation (31) with 𝑦(𝑔)

𝑘
replaced by 

𝑦
(𝑓 )
𝑘

and 𝐵′
𝑔 replaced by 𝐵′

𝑓 𝑙
. Given the equilibrium mass fractions 𝑦(𝑔)

𝑘
, 

formula (28) can be solved for 𝐵′
𝑐 with 𝑘 = 𝑘𝐶 ,

𝐵′
𝑐 =

𝑦
(𝑔)
𝑘

− 𝑦
(𝑓 )
𝑘

𝑦
(𝑓 )
𝑘

− 1
𝐵′

𝑔 +
𝑦
(𝑒)
𝑘

− 𝑦
(𝑔)
𝑘

𝑦
(𝑔)
𝑘

− 1
. (35)

First, we observe that since the equilibrium mass fractions are indepen-

dent of 𝐵′
𝑔 , then 𝐵′

𝑐 is a linear function of 𝐵′
𝑔 . Second, if we evaluate 

(35) at 𝐵′
𝑓 𝑙

= 0 (i.e., 𝐵′
𝑔 = −𝐵′

𝑐 ) we can see after some manipulation that 
this agrees with (34). Thus, 𝐵′

𝑐 is continuous at 𝐵′
𝑓 𝑙

= 0, as desired. In 
the energy equation (29), ℎ(𝑓 ) = 𝑐𝑝𝑇 , where 𝑇 is the wall temperature 
and 𝑐𝑝 is the specific heat capacity based on “edge” quantities (due to 
the fact that we take 𝑦(𝑓 )

𝑘
= 𝑦

(𝑒)
𝑘

), and ⟨ℎ⟩(𝑔) is taken to be the enthalpy 
of the wall equilibrium mixture delivered by the 𝐵′ table.

We conclude this section by pointing the reader’s attention to Fig. 2, 
which shows a schematic of the three 𝐵′

𝑓 𝑙
regimes discussed thus far. 

This shows that if we account for the inflow of gases into the porous 
material (i.e., 𝐵′

𝑔 < 0), 𝐵′
𝑐 will always be greater than or equal to 𝐵′

𝑐,0, 
which is the value at 𝐵′

𝑔 = 0. In particular, if 𝐵′
𝑔 < 0 is small enough 

that 0 ≤ 𝐵′
𝑓 𝑙

≤ 𝐵′
𝑐 , then by equation (34) we see that 𝐵′

𝑐 = 𝐵′
𝑐,0. Since 𝐵′

𝑐

is directly proportional to the recession velocity of the interface , this 
implies that the classical 𝐵′ formulation will predict a recession veloc-

ity that is exactly equal to the recession velocity predicted by the new 
𝐵′ formulation. However, if 𝐵′

𝑔 < 0 is large enough that 𝐵′
𝑓 𝑙

< 0, then 
by (35) 𝐵′

𝑐 > 𝐵′
𝑐,0, and the classical framework will predict a recession 

velocity that is lower than that predicted by the new formulation.

Finally, in order to facilitate the implementation of the new 𝐵′

formulation in existing material response codes, we provide some repre-

sentative pseudocode in Algorithm 1. Given a modified 𝐵′ table (which 
can be easily generated following the guidelines in Appendix A or using 
the scripts in https://github .com /albertopadovan /Modified _Bprime), 

the algorithm shows that existing material response codes that are al-

https://github.com/albertopadovan/Modified_Bprime
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ready equipped to use the classical 𝐵′ formulation should require very 
little additional logic to handle the extended 𝐵′ formulation.

Algorithm 1 Algorithmic outline of the new 𝐵′ formulation.

Input: Modified 𝐵′ table generated following Appendix A and/or the scripts in the 
repository https://github .com /albertopadovan /Modified _Bprime, pressure 𝑝 and 
temperature ⟨𝑇 ⟩ at the ablating surface, and gas velocity ⟨𝑢𝑖⟩(𝑔)𝑛𝑖 normal to the 
ablating surface.

Output: Normalized ablation rate 𝐵′
𝑐
, enthalpy ℎ𝑤 of the equilibrium mixture at the 

surface, and solution to equations (28) and (29).

1: Compute 𝐵′
𝑔

(see definition in section 3.2) using ⟨𝑢𝑖⟩(𝑔)𝑛𝑖 .

2: Using 𝐵′
𝑔
, 𝑝 and ⟨𝑇 ⟩, compute 𝐵′

𝑐
and ℎ𝑤 using the modified 𝐵′ table (which is 

constructed so that (28) is automatically satisfied with the appropriate 𝜉𝑘).

3: Compute 𝐵′
𝑓 𝑙
= 𝐵′

𝑔
+ 𝐵′

𝑐
.

4: if 𝐵′
𝑓 𝑙

> 𝐵′
𝑐

then

5: Solve (29) with 𝐵′
𝑓 𝑙

≥ 0, ℎ(𝑓 ) = ℎ𝑤 and ⟨ℎ⟩(𝑔) taken to be the enthalpy of the ele-

mental composition on the porous material side of the interface (see section 5.1.1).

6: else if 0 ≤ 𝐵′
𝑓 𝑙
≤ 𝐵′

𝑐
then

7: Solve (29) with 𝐵′
𝑓 𝑙
≥ 0 and ℎ(𝑓 ) = ⟨ℎ⟩(𝑔) = ℎ𝑤 (see section 5.1.2).

8: else

9: Solve (29) with 𝐵′
𝑓 𝑙

< 0, ℎ(𝑓 ) = ℎ(𝑒) and ⟨ℎ⟩(𝑔) = ℎ𝑤 (see section 5.2).

10: end if

5.3. A note on the blowing/suction correction

When we are interested in computing the material response of a 
porous material to an external flow, but we are not resolving (or com-

puting) the response of the fluid to the material dynamics, the Stanton 
number 𝑆𝑡 is usually corrected to account for the effect of a non-zero 
velocity (i.e., suction/blowing) at the interface. In particular, given the 
Stanton number 𝑆𝑡0 associated with no suction or blowing, the cor-

rected Stanton number 𝑆𝑡 is given by

𝑆𝑡

𝑆𝑡0
=

log
(
1 + 2𝜆𝐵′

𝑓 𝑙

)
2𝜆𝐵′

𝑓 𝑙

, (36)

where 𝜆 > 0. This correction was initially derived from the incompress-

ible (laminar) velocity boundary layer equations to correct the skin 
friction coefficient in the presence of suction or blowing [10]. Given 
that the thermal and concentration boundary layer equations with unity 
Prandtl and Lewis numbers are analogous to the velocity boundary layer 
equations [6,9], it follows immediately that, under the same assump-

tions, the same correction can be used to correct the Stanton number. 
The derivation in [10] for laminar incompressible boundary layers led 
to 𝜆 = 0.5. According to [19], 𝜆 = 0.4 has been reported to be better 
suited for turbulent flows.

Since the derivation in [10] holds for any positive and negative non-

zero velocities at the surface (i.e., positive and negative 𝐵′
𝑓 𝑙

, in our 
case), the correction in (36) may be used for both positive and negative 
values of 𝐵′

𝑓 𝑙
. The only caveat is that (36) requires 2𝜆𝐵′

𝑓 𝑙
> −1, oth-

erwise the logarithm is not defined. This simply means that as 2𝜆𝐵′
𝑓 𝑙

approaches −1 from the right, the assumptions that originally led to 
(36) no longer hold. We remark that (36) is well-posed for 𝐵′

𝑓 𝑙
= 0, 

since

lim
2𝜆𝐵′

𝑓 𝑙
→0

𝑆𝑡

𝑆𝑡0
= 1. (37)

In practical applications, it is possible for 2𝜆𝐵′
𝑓 𝑙

to be less than or equal 
to −1, in which case use of (36) would lead to computational issues. We 
resolve the issue by artificially lower bounding 2𝜆𝐵′

𝑓 𝑙
to −0.9. We close 

this section by observing that while the blowing/suction correction is 
the most popular approach to account for suction and blowing in a 
boundary layer, a few authors [22,4] have proposed formulations that 
7

bypass the need to correct the Stanton number using (36).
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6. Application to a TACOT wedge

In this section we compare the new 𝐵′ formulation with the classical 
𝐵′ formulation on a two-dimensional pyrolyzing and ablating TACOT 
[13] wedge, whose geometry is shown in Fig. 3a.

6.1. Description of the computational setup

The “Theoretical Ablative Composite for Open Testing” (TACOT) is a 
porous material consisting of two solid phases (non-reacting fibers and 
a reacting matrix), with a virgin (i.e., non-pyrolyzed) solid volume frac-

tion of 0.20 and a charred (i.e., pyrolyzed) solid volume fraction of 0.15. 
The response of the material to a prescribed boundary condition (de-

scribed below) is simulated using the in-house material response solver 
CHyPS, whose governing equations and computational discretization 
are described in section III of [3]. In particular, all conservation laws 
are obtained via volume averaging, with the conservation of gaseous 
mass and solid mass taking the form of equations (8) and (9), respec-

tively. The volumetric source terms ⟨𝜓𝑘⟩(𝑔) and ⟨𝜓𝑠⟩(𝑠) enter the for-

mulation due to the heterogenous conversion of solid mass to gaseous 
mass promoted by pyrolysis. Pyrolysis itself is modeled via three chem-

ical reactions with Arrenhius coefficients specified in table 1 of [3]. 
Conservation of momentum within the porous material is reduced to 
Darcy’s law, while conservation of energy (which takes the form of 
(21)) is posed under the assumption of thermal equilibrium. Finally, 
the mesh movement induced by ablation is handled with the Arbitrary 
Lagrangian Eulerian (ALE) formulation.

The treatment of the gas and solid properties inside the TACOT 
wedge are discussed in detail in sections III D and IV of [3]. In par-

ticular, gas properties are assumed to be functions of pressure and 
temperature only, while solid properties are assumed to be functions 
of temperature and of the pyrolysis progress variable (denoted 𝜏 in 
the notation of [3], with 𝜏 = 0 indicating the virgin state and 𝜏 = 1
the charred state). Gas and solid properties, as well as bulk properties 
(e.g., thermal conductivity and permeability) are determined via the 
TACOT lookup tables available in [13]. Moreover, TACOT is treated 
as an isotropic porous material and the volumetric gas composition is 
held constant at 𝑦𝑂 = 0.115, 𝑦𝐶 = 0.206 and 𝑦𝐻 = 0.679 according to the 
TACOT model [13]. It is worth observing that a more advanced volu-

metric gas chemistry model could be used, and it could include species 
tracking and equilibrium/non-equilibrium chemistry. In that case, a 
chemistry boundary condition can be provided by the new 𝐵′ formu-

lation when gas is advecting into the material. The new 𝐵′ formulation 
is implemented according to Algorithm 1. The classical 𝐵′ formulation 
is implemented analogously, except that 𝐵′

𝑔 is artificially set to 0 in step 
1 of Algorithm 1 when boundary layer gases enter the porous material. 
Finally, the radiation term Δ𝑞rad in equation (29) is modeled following 
the Stefan-Boltzmann law for a grey body.

The dynamics of the material are fully specified by the pressure 
and normalized heat flux profiles on the surface of the wedge. Nominal 
normalized pressure 𝑝∕𝑝∞ and normalized heat flux 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖 profiles, 
shown in Figs. 3b and 3c, are obtained from the steady-state solution 
of a Mach-2 flow around the wedge. In particular, we used the in-house 
solver PlasCom2 to solve the compressible Navier-Stokes equations at 
freestream conditions 𝑀∞ = 2, 𝑇∞ = 1000 K, 𝑝∞ = 10 kPa, and Reynolds 
number 𝑅𝑒∞ = 1.1 × 106 based on a freestream characteristic length 
𝐿 = 1. The fluid was modeled as a single-species ideal gas with 𝛾 = 1.4
and 𝑅 = 287 J∕ (kg − K). Viscosity and thermal conductivity were mod-

eled with a viscous power law of 𝜇 = 𝜇298
(

𝑇 ∕𝑇298
)0.666

and 𝑃 𝑟 = 0.72. 
The material interface boundary condition was enforced with a no-slip, 
impermeable, isothermal wall at 1000 𝐾 , with non-zero pressure gra-

dient. The 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖 profiles were computed using equation (23) with 
ℎ(𝑒) = ℎ∞

(
1 +

(√
𝑃 𝑟 (𝛾 − 1)∕2

)
𝑀2

∞

)
. The 𝐵′ tables were generated us-

ing Mutation++ [25] with the NASA-9 thermodynamics database, and 

assuming an “edge” elemental composition 𝑦(𝑒)

𝑁
= 0.790, 𝑦(𝑒)

𝑂
= 0.210, and 

https://github.com/albertopadovan/Modified_Bprime


International Journal of Heat and Mass Transfer 218 (2024) 124770A. Padovan, B. Vollmer, F. Panerai et al.

Fig. 3. (a) Steady-state normalized streamwise velocity field around the wedge, (b) 𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖 profile and (c) normalized pressure profile at the wedge surface. 
Here, 𝑝∞ = 10 kPa. The wedge surface at 𝑡 = 0 is parameterized according to the equation 𝑥 = 𝑐1𝑦3 + 𝑐2𝑦2 + 𝑐3 , where 𝑐1 = −7966.80539304, 𝑐2 = 336.99725483 and 
𝑐 = −0.09014195. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
3

Table 1

Scaling factors 𝛼 for the normalized 
heat flux boundary condition, and ex-

ternal reference pressure 𝑝∞ .

𝛼 𝑝∞

Case 1 1 10 kPa

Case 2 1 1 kPa

Case 3 1∕4 1 kPa

Case 4 1∕4 10 kPa

a pyrolysis gas elemental composition 𝑦(pyro)
𝑂

= 0.115, 𝑦(pyro)
𝐶

= 0.206 and 
𝑦
(pyro)
𝐻

= 0.679. Details are described in Appendix A. It is also important 
to remark that, throughout, ablation is treated exclusively as a surface 
phenomenon and volume ablation is neglected.

In order to study how the two 𝐵′ formulations behave under dif-

ferent heating and external pressure conditions, we run four different 
simulations. In particular, we specify the normalized heat flux boundary 
condition as

𝛼𝜌𝑒𝑢𝑒,𝑖𝑆𝑡 𝑛𝑖, (38)

where 𝛼 is a scaling factor, and we vary the external reference pressure 
𝑝∞. The values of 𝛼 and 𝑝∞ for the four different cases are listed in 
Table 1. The material response code is initialized with zero heat flux 
and uniform pressure 𝑝∞ on the wedge surface at 𝑡 = 0, and it is brought 
(via linear interpolation) to the desired surface boundary condition over 
a ramping period of 0.01 s. After that, we observe the response of the 
wedge for a total of 0.5 s. For all cases considered herein, we will see that 
the length of the temporal interval 𝑡 ∈ [0, 0.5] s is sufficient for initial 
transients to decay and to observe post-transient dynamics. Throughout, 
we use 𝜆 = 0.5 in the blowing correction (36).

6.2. Discussion of the results

Figs. 4 and 5 show the degree of surface recession at times 𝑡 = 0.20 s
and 𝑡 = 0.50 s, respectively, for the four different cases considered in 
Table 1. The top half of all panels (𝑦 ≥ 0) shows the wedge geometry 
as predicted by the new 𝐵′ formulation, while the bottom half shows 
the geometry as given by the classical 𝐵′ formulation. The geometry is 
colorcoded by the local instantaneous recession velocity (in meters per 
second) normal to the surface. From the figures, we see that in the high 
pressure cases (cases 1 and 4), the new 𝐵′ formulation predicts a higher 
recession velocity and a larger shape deformation. By contrast, in the 
low pressure cases (cases 2 and 3) the two formulations give (almost) 
identical predictions. These observations can be explained by looking at 
the time history of 𝐵′

𝑔 at the leading edge of the wedge in Fig. 6. Here, 
we see that for cases 2 and 3 (panels (b) and (c)), 𝐵′

𝑔 ≥ 0 for (almost) all 
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times, meaning that porous material gases are blown into the boundary 
layer. In this case, the two formulations are mathematically identical 
and it should therefore be expected that they predict the same surface 
recession velocities. On the other hand, we see that for cases 1 and 4 
(panels (a) and (d)), 𝐵′

𝑔 in the new formulation (solid lines) remains 
negative for all times, while 𝐵′

𝑔 = 0 in the classical formulation (dashed 
lines). By equation (35), a negative 𝐵′

𝑔 leads to a larger 𝐵′
𝑐 , which, 

in turn, gives higher recession velocities. Before moving forward, it is 
important to remark that in both 𝐵′

𝑔 formulations, boundary layer gases 
are allowed to flow into the porous material (this can be seen clearly 
in Figs. 7 and 9). However, in the classical 𝐵′

𝑔 formulation the effect 
of inflowing gases on the surface chemistry is neglected and 𝐵′

𝑔 is not 
allowed to attain negative values.

We now further investigate cases 1 and 4. While both cases exhibit 
sustained negative 𝐵′

𝑔 values, we seek an explanation for the obser-

vation that, in case 4, there is a much more pronounced difference 
between the new and the classical 𝐵′ formulations. This difference is 
evident from Fig. 5d, where we see that the top surface (given by the 
new 𝐵′ formulation) has receded almost twice as much as the bottom 
surface (given by the classical 𝐵′ formulation). Ultimately, as discussed 
throughout the manuscript, the reason behind the discrepancy between 
the two formulations is driven by

Δ𝐵′
𝑔 = 𝐵′

𝑔,classical
− 𝐵′

𝑔,new, (39)

which is significantly larger in case 4 (Fig. 6d) than in case 1 (Fig. 6a).

In order to understand the difference between Δ𝐵′
𝑔 in cases 1 and 

4, we first recall that 𝐵′
𝑔 can be understood as a normalized mass flux 

and, as such, it scales linearly with the local gas density and the local 
gas velocity. Interestingly, we see from Figs. 7a and 7d that the gas 
velocity at the stagnation point is approximately equal for both cases 
1 and 4. (This is likely due to the fact that both cases are exposed to 
the same pressure boundary condition (see Table 1).) It follows that the 
difference in Δ𝐵′

𝑔 must be due to a proportional difference in the gas 
density, with a higher gas density in case 4 (thus, higher mass flux and 
larger Δ𝐵′

𝑔) and a lower gas density in case 1. The reason why case 4 
exhibits a higher gas density can be easily understood by recalling that 
case 4 is exposed to a normalized heat flux that is four times lower than 
that imposed in case 1 (see, once again, Table 1). Consequently, the 
temperature at the wedge leading edge in case 4 (Fig. 8d) is lower than 
its counterpart in case 1 (Fig. 8a), thereby leading to higher and lower 
densities, respectively.

In light of this discussion, we conclude that aspiration (𝐵′
𝑔 < 0) has a 

larger effect on the recession velocity at lower temperature and higher 
pressures. From an intuitive standpoint, the high pressure is necessary 
to cause aspiration (i.e., 𝐵′

𝑔 < 0), and this is required to observe any 
sort of difference between the two formulations. Clearly, the higher 
the pressure the higher the difference. However, as discussed, we also 
observe that the surface temperature has a non-negligible effect on the 

surface recession, with higher temperatures leading to higher recession 
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Fig. 4. Wedge geometry at time 𝑡 = 0.20 s, colorcoded by the instantaneous surface recession velocity (in meters per second) normal to the surface. The top half 
(𝑦 ≥ 0) is the prediction using the new 𝐵′ formulation, the bottom half is the prediction using the classical 𝐵′ formulation. The gray line shows the geometry at 𝑡 = 0.

Fig. 5. Analog of Fig. 4 at time 𝑡 = 0.50 s.
velocities (case 1), but lower temperatures causing a larger spread Δ𝐵′
𝑔

between the two formulations.

In closing the results section, it is also interesting to study the in-

flow/outflow of gases into and out of the porous material as a function 
of time. To do so, we focus on cases 3 and 4, and we plot contours of 
the gas velocity normal to the surface as a function of time and stream-

wise location along the wedge surface (Fig. 9). In both cases, we do not 
9

observe noteworthy qualitative differences between the flow of gases 
computed using the new 𝐵′ formulation (top panels) and the classical 
𝐵′ formulation (bottom panels). This suggests that accounting for the 
inflow of gases into the porous material has an effect primarily in the 
surface recession rate and in the surface thermodynamics (as discussed 
in the preceding paragraphs). Despite this, Fig. 9 is still interesting, and 
it can be used to better understand the physics at hand. Interestingly, 
in case 3 we observe a “flow reversal” whereby gases that are initially 

flowing into the material at early times and near the wedge leading 
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Fig. 6. Time history of 𝐵′
𝑔

at the wedge leading edge for cases 1-4 (panels (𝑎)-(𝑑)). The solid line corresponds to the new 𝐵′ formulation, while the dashed line to 
the classical 𝐵′ formulation.

Fig. 7. Analog of Fig. 6, for the time-history of the gas velocity normal to the surface at the wedge leading edge. (Negative values indicate that gases are entering 
the porous material.)

Fig. 8. Analog of Fig. 6, for the time-history of the surface temperature at the leading edge of the wedge.
edge, are eventually expelled along the whole surface at later times. 
(This is likely to be attributed to a rise in pressure inside the material 
due to pyrolysis, as discussed in [16].) Except for early times, 𝐵′

𝑔 ≥ 0
along the whole surface, so the new 𝐵′ formulation is mostly in agree-

ment with the classical 𝐵′ formulation, and the integrated difference in 
terms of surface recession is qualitatively negligible (see Figs. 4c and 
5c). Case 4, on the other hand, exhibits much larger space-time regions 
of gas inflow, so it is to be expected that accounting for the effect of as-

piration in the 𝐵′ formulation will lead to significant differences in the 
predicted surface recession (see Figs. 4d and 5d). Interestingly, case 4 
does not exhibit the same flow reversal as case 3, except for a narrow 
region on the wedge shoulder (approximately between 𝑥 = −0.089 and 
𝑥 = 0.087 and after time 𝑡 ≈ 0.25).

7. Conclusion

We derive the 𝐵′ formulation for ablating-surface boundary con-

ditions from first principles, starting from a jump condition that we 
obtained following the approach of [11]. This allows to clearly identify 
10

all the underlying assumptions of the 𝐵′ formulation, especially when 
applied at a reacting interface between a boundary layer and a porous 
material. We then extend the 𝐵′ formalism to account for the advective 
transport of boundary layer gases into the porous material. Although 
this is a common occurrence in hypersonics applications and in thermal 
protection systems, the classical 𝐵′ formulation neglects its effect on the 
dynamics of the material. We demonstrate, both theoretically and via 
examples, that accounting for the advective transport of gases into the 
porous material can have a significant effect on the recession velocity 
of ablating interfaces.
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Fig. 9. Contour plot of the gas velocity (in meters per second) normal to the surface. The black contour lines emphasize the 0-contour, i.e., the transition from 
negative gas velocities (aspiration) to positive gas velocities (blowing). The top panels are given by the new 𝐵′ formulation, while the bottom panels by the classical 

′
𝐵 formulation.
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Appendix A. Generating the 𝑩′ tables

Here, we describe how the 𝐵′ tables (for the new framework) can be 
generated using Mutation++ [25]. We seek a table whose independent 
variables are the wall pressure 𝑝, the wall temperature ⟨𝑇 ⟩ and the nor-

malized blowing rate 𝐵′
𝑔 on the porous material’s side of the interface. 

Given 𝑝, ⟨𝑇 ⟩ and 𝐵′
𝑔 as inputs, the tables will output (after interpola-

tion, if necessary), the normalized recession rate 𝐵′
𝑐 and the enthalpy 

ℎ𝑤 of the equilibrium mixture.

When generating the tables, some care is required. In particular, 
Mutation++ generates tables as a function of 𝑝, ⟨𝑇 ⟩ and the normalized 
mass flux of species that are advected towards the interface. Depending 
on the specific case (see subsections below), this normalized mass flux 
is either 𝐵′

𝑔 or 𝐵′
𝑓 𝑙

. As mentioned, however, during computation we 
would like to perform table look-ups based on 𝑝, ⟨𝑇 ⟩ and 𝐵′

𝑔 , since 𝐵′
𝑔

is a quantity that is always readily computed by the material response 
solver (recall the definition of 𝐵′

𝑔 from equation (17)). In order to be 
able to perform look-ups based on 𝑝, ⟨𝑇 ⟩ and 𝐵′

𝑔 , the tables generated 
by Mutation++ require some post-processing.

A.1. Table for 𝐵′
𝑔 ≥ 0

From section 5, this case corresponds to 𝐵′
𝑓 𝑙

≥ 𝐵′
𝑐 . This table can be 

generated using Mutation++ directly, without any further post process-

ing, since the normalized mass flux of species that are advected towards 
the interface is precisely 𝐵′

𝑔 . The composition of the reactants used for 
the equilibrium calculations is specified in section 5.1.1. Henceforth, 
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we refer to this table as Table I.
A.2. Table for 𝐵′
𝑓 𝑙

< 0

From section 5 this is one of the two cases corresponding to 𝐵′
𝑔 <

0. (The other case is 0 ≤ 𝐵′
𝑓 𝑙

≤ 𝐵′
𝑐 , discussed shortly.) This table can 

also be generated using Mutation++, with the reactants composition 
specified in section 5.2. However, the normalized mass flux used by 
Mutation++ corresponds to 𝐵′

𝑓 𝑙
(and not 𝐵′

𝑔 , as desired). Fortunately, 
by mass conservation, we know that 𝐵′

𝑔 = 𝐵′
𝑓 𝑙
−𝐵′

𝑐 . The table generated 
by Mutation++ can then be easily rearranged such that the look-up can 
be performed based on 𝐵′

𝑔 . We henceforth refer to this table as Table II.

A.3. Table for 0 ≤ 𝐵′
𝑓 𝑙

≤ 𝐵′
𝑐

This is the other case corresponding to 𝐵′
𝑔 < 0. However, we recall 

from section 5.1.2, that in this specific case 𝐵′
𝑐 and ℎ𝑤 (i.e., the outputs 

of the 𝐵′ tables) are independent of 𝐵′
𝑓 𝑙

or 𝐵′
𝑔 . Then, for a given 𝑝 and ⟨𝑇 ⟩, the outputs 𝐵′

𝑐 and ℎ can be calculated from Table I with 𝐵′
𝑔 = 0. 

We henceforth refer to this table as Table III. Finally, a unified 𝐵′ table 
can be obtained by “stacking” together tables II, III and I (in increasing 
𝐵′

𝑔 order, from negative to positive).

Appendix B. Mass- and heat-transfer boundary layer analogy

While this topic is addressed in [6] and [9], and touched upon in [5]

and in Appendix A in [18], we repropose the derivation of the mass- and 
heat-transfer boundary layer analogy. This will clarify the definition of 
mass- and heat-transfer Stanton numbers, as well as the interpretation 
of the mass- and heat-transfer potential models used in the 𝐵′ mass and 
energy balances.

Following [6], we begin with the steady, zero-pressure-gradient 
boundary layer equations

𝜕𝜌𝑢

𝜕𝑥
+ 𝜕𝜌𝑣

𝜕𝑦
= 0 (B.1)

𝜌𝑢
𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
= 𝜕

𝜕𝑦

(
𝜇

𝜕𝑢

𝜕𝑦

)
(B.2)

𝜌𝑢
𝜕𝐻

𝜕𝑥
+ 𝜌𝑣

𝜕𝐻

𝜕𝑦
= − 𝜕𝜀

𝜕𝑦
+ 𝜕

𝜕𝑦

(
𝜇𝑢

𝜕𝑢

𝜕𝑦

)
(B.3)

𝜌𝑢
𝜕𝑤𝑖

𝜕𝑥
+ 𝜌𝑣

𝜕𝑤𝑖

𝜕𝑦
= −

𝜕𝑗𝑖

𝜕𝑦
. (B.4)

Here, 𝑤𝑖 are the mass fractions in a mixture with 𝑁𝑠 species, 𝐻 = ℎ +
(1∕2)(𝑢2 + 𝑣2) is the total enthalpy and the fluxes 𝜀 and 𝑗𝑖 are defined as

𝜀 = −𝜅
𝜕𝑇

𝜕𝑦
+

𝑁𝑠∑
𝑖=1

ℎ𝑖𝑗𝑖, 𝑗𝑖 = −𝜌𝐷𝑖

𝜕𝑤𝑖

𝜕𝑦
. (B.5)

The definition of 𝑗𝑖 is known as Fick’s law, with diffusion coefficient 𝐷𝑖
associated with species 𝑖. The definition of 𝜀, on the other hand, is the 
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sum of Fourier’s law for heat conduction, and the transport of enthalpy 
due to diffusion (see, e.g., [24]).

Using the definition of the fluxes in (B.5), equations (B.4) and (B.3)

can be cast in conservative form using (B.1) and (B.2),

𝜕

𝜕𝑥
(𝜌𝑢ℎ) + 𝜕

𝜕𝑥
(𝜌𝑣ℎ + 𝜀) = 0, (B.6)

𝜕

𝜕𝑥

(
𝜌𝑢𝑤𝑖

)
+ 𝜕

𝜕𝑦

(
𝜌𝑣𝑤𝑖 − 𝜌𝐷𝑖

𝜕𝑤𝑖

𝜕𝑦

)
= 0 (B.7)

In obtaining (B.6) we have used the definition of 𝐻 , neglected the term 
𝜌𝑢𝜕𝑣∕𝜕𝑥 + 𝜌𝑣𝜕𝑣∕𝜕𝑦 (consistently with the scaling arguments that led to 
the velocity boundary layer equation (B.2)), and neglected the viscous 
dissipation term 𝜇 (𝜕𝑢∕𝜕𝑦)2 (see page 366 in [9]).

For boundary layer analogy between the thermal boundary layer 
(B.6) and the species boundary layer (B.7), we require

𝜀 = −𝜌𝐷𝑖
𝜕ℎ

𝜕𝑦
. (B.8)

As a first step, we observe that the enthalpy of the mixture can be ex-

pressed as

ℎ(𝑇 , 𝑤) =
𝑁𝑠∑
𝑖=1

ℎ𝑖(𝑇 )𝑤𝑖, (B.9)

so that, using the chain rule and defining 𝑐𝑝 = 𝜕ℎ∕𝜕𝑇 , we have

𝑑𝑇 = 1
𝑐𝑝

𝑑ℎ − 1
𝑐𝑝

𝑁𝑠∑
𝑖=1

ℎ𝑖(𝑇 )𝑑𝑤𝑖. (B.10)

Using the definition of 𝜀 in (B.5) and the equation above, we can write

𝜀 = − 𝜅

𝑐𝑝

𝜕ℎ

𝜕𝑦
+ 𝜅

𝑐𝑝

𝑁𝑠∑
𝑖=1

ℎ𝑖

𝜕𝑤𝑖

𝜕𝑦
− 𝜌

𝑁𝑠∑
𝑖=1

ℎ𝑖𝐷𝑖

𝜕𝑤𝑖

𝜕𝑦
. (B.11)

Defining the Prandlt and Schmidt numbers

𝑃 𝑟 =
𝜇𝑐𝑝

𝜅
, 𝑆𝑐𝑖 =

𝜇

𝜌𝐷𝑖

, (B.12)

we can write (B.11) as

𝜀 = − 𝜇

𝑃 𝑟

𝜕ℎ

𝜕𝑦
+ 𝜇

𝑃 𝑟

𝑁𝑠∑
𝑖=1

(
1 − 𝑃 𝑟

𝑆𝑐𝑖

)
ℎ𝑖

𝜕𝑤𝑖

𝜕𝑦
. (B.13)

From this equation, it is immediate that (B.8) is satisfied so long as 
𝑃 𝑟 = 𝑆𝑐𝑖 (i.e., if the species Lewis number 𝐿𝑒𝑖 = 𝑃 𝑟∕𝑆𝑐𝑖 is equal to 1). 
Thus, given the set of assumptions made throughout this derivation, 
mass- and heat-transfer boundary layer analogy is achieved for species 
Lewis numbers 𝐿𝑒𝑖 = 1. We note in passing that to achieve analogy with 
the velocity boundary layer in (B.2), one would also require 𝑃 𝑟 = 1. 
Before moving forward, we wish to point out that the derivation of the 
boundary layer analogy presented herein is slightly different than the 
one in [6], where the author worked directly with total enthalpy. This 
led to a different set of assumptions and to the additional requirement 
of 𝑃 𝑟 for thermal/species boundary layer analogy.

Using the derivation above, we can now straightforwardly define 
the mass-transfer and heat-transfer Stanton numbers. Assuming equal 
diffusion coefficients 𝐷 = 𝐷𝑖 for all 𝑖, the mass-transfer Stanton number 
𝑆𝑡𝑀 is defined as

𝑗𝑖 = −𝜌𝐷
𝜕𝑤𝑖

𝜕𝑦
∶= 𝜌𝑒𝑢𝑒𝑆𝑡𝑀

(
𝑤𝑖,𝑠 − 𝑤𝑖,𝑒

)
, (B.14)

where the subscript “e” denotes an edge quantity and the subscript “s” 
denotes a surface quantity. The heat-transfer Stanton number 𝑆𝑡𝐻 is 
defined similarly,

𝜀 = 𝜌𝑒𝑢𝑒𝑆𝑡𝐻

(
ℎ𝑠 − ℎ𝑒

)
. (B.15)

By the aforementioned boundary layer analogy, it follows immediately 
12

that
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𝑆𝑡 ∶= 𝑆𝑡𝑀 = 𝑆𝑡𝐻 . (B.16)

As a final note, it is interesting to express the contribution of 𝜅𝜕𝑇 ∕𝜕𝑦

to 𝜀 in terms of the Stanton number. Starting from the definition of 𝜀

in (B.5), using (B.14) and (B.15) alongside the boundary layer analogy 
and equal diffusion coefficients, we have

𝜀 = 𝜌𝑒𝑢𝑒𝑆𝑡
(

ℎ𝑠 − ℎ𝑒

)
= −𝜅

𝜕𝑇

𝜕𝑦
+ 𝜌𝑒𝑢𝑒𝑆𝑡

𝑁𝑠∑
𝑖=1

ℎ𝑖

(
𝑤𝑖,𝑠 − 𝑤𝑖,𝑒

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=
(

ℎ𝑠−ℎ𝑠,𝑒

)
, (B.17)

which implies

−𝜅
𝜕𝑇

𝜕𝑦
= 𝜌𝑒𝑢𝑒𝑆𝑡

(
ℎ𝑠,𝑒 − ℎ𝑒

)
, (B.18)

where ℎ𝑠,𝑒 is the enthalpy at the surface with edge composition.
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