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We propose a framework that elucidates the input–output characteristics of flows with
complex dynamics arising from nonlinear interactions between different time scales.
More specifically, we consider a periodically time-varying base flow, and perform a
frequency-domain analysis of periodic perturbations about this base flow. The response
of these perturbations is governed by the harmonic resolvent, which is a linear operator
similar to the harmonic transfer function introduced by Wereley (1991 Analysis and
control of linear periodically time-varying systems, PhD thesis, Massachusetts Institute of
Technology). This approach makes it possible to explicitly capture the triadic interactions
that are responsible for the energy transfer between different time scales in the flow.
For instance, perturbations at frequency ω are coupled with perturbations at frequency α
through the base flow at frequency ω − α. We draw a connection with resolvent analysis,
which is a special case of the harmonic resolvent when evaluated about a steady base flow.
We show that the left and right singular vectors of the harmonic resolvent are the optimal
response and forcing modes, which can be understood as full spatio-temporal signals
that reveal space–time amplification characteristics of the flow. Finally, we illustrate
the method on examples, including a three-dimensional system of ordinary differential
equations and the flow over an airfoil at near-stall angle of attack.

Key words: control theory

1. Introduction

Model-based approaches rooted in linear systems theory have helped shed light on the
nature of energy amplification mechanisms in flows of interest. It has been shown through
linear analyses, for instance, that the transient energy growth in channel flows is due
to the non-normality of the linearized Navier–Stokes operator governing the dynamics
of perturbations about the well-known laminar parabolic velocity profile (Schmid &
Henningson 2001). Jovanović & Bamieh (2005) and McKeon & Sharma (2010), on the
other hand, have investigated energy amplification mechanisms in channel flows and
turbulent pipe flow by studying the linearized response to perturbations, via input–output
analysis or resolvent analysis. Likewise, Symon et al. (2018) have recently investigated the
resonance and pseudoresonance mechanisms in low-Reynolds-number cylinder flow and
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turbulent pipe flow using similar techniques. Although these analyses provide valuable
insight into the amplification mechanisms of given flows, they do so under the assumption
of small amplitude fluctuations about a steady base flow (often the temporal mean).
Furthermore, because of the time-invariant nature of the chosen base flow, such methods
are inherently incapable of capturing the cross-frequency interactions that are responsible
for the energy transfer between motions at different time scales. Not only are these
cross-frequency interactions the fundamental mechanisms behind the energy cascade
in turbulent flows, but they are also responsible for the rise of complex dynamics in
laminar flows such as boundary layers (Mittal, Kotapati & Cattafesta 2005) and mixing
layers (Ho & Huang 1981). The limitations of these analyses are of course known
and have partly been addressed in the past. For instance, Jovanović & Fardad (2008)
introduced a perturbation analysis framework to study the amplification mechanisms
of linear, small-amplitude, time-periodic systems and applied it to two-dimensional
oscillating channel flow. More recently, Rigas, Sipp & Colonius (2020), analysed the
transition to turbulence in a boundary layer by seeking the flow structure that would
maximize the shear stress at the wall through the nonlinear Navier–Stokes operator
in the frequency domain. Shaabani-Ardali, Sipp and Lesshafft (2020), on the other
hand, implemented a time-domain analysis to compute the time-periodic inlet forcing
that would maximize mixing about a time-periodic base flow in a bifurcating jet. We
extend the resolvent framework in order to address the limitations of linear time-invariant
analyses, while still providing insight into the input–output characteristics of the fluid flow
at hand.

We note that the energy production, dissipation and transfer in fluid flows have also
been studied using techniques other than the aforementioned input–output framework.
Majda & Timofeyev (2000), for instance, analysed the statistical dynamics and energy
transfer mechanisms in the inviscid Burgers equation by performing a harmonic balance in
wavenumber space. Noack et al. (2008), on the other hand, leveraged Galerkin projection
techniques to reduce the dimensionality of the Reynolds-averaged Navier–Stokes equation
and develop a reduced-order model for the flow of energy in cylinder flow and
homogeneous shear turbulence.

This paper considers a framework we call harmonic resolvent analysis, in which
the dynamics are expanded about a periodically time-varying base flow, which can be
viewed as the large-scale coherent structures of the flow. It will be shown in § 2 that
this formulation justifies treating the higher-order terms in the expansion as small input
disturbances. Analysing the linearized governing equations in the frequency domain
enables the explicit computation of the harmonic resolvent, a linear operator which
governs the dynamics of small perturbations about the time-varying, periodic base flow.
Because of the multimodal nature of the base flow, the harmonic resolvent can capture the
leading-order cross-frequency interactions, which arise in the form of triadic couplings
between perturbations at frequencies ω and α through the base flow at frequency ω − α.
The number of triads that can be captured is determined by the number of Fourier modes
that are retained in the base flow and we show that if the latter is simply a steady flow, then
resolvent analysis is recovered. The harmonic resolvent operator can be viewed as a special
case of the harmonic transfer function introduced by Wereley (1991), which maps inputs to
outputs in the space of exponentially modulated periodic signals. Furthermore, it is worth
mentioning that the temporal expansion of the dynamics about the large-scale coherent
structures of the flow that we perform is similar to the wavenumber-space expansions
applied in the generalized quasilinear approximation introduced by Marston, Chini &
Tobias (2016) to describe the interaction between the large and small scale of flows in
the context of direct statistical simulations.
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Harmonic resolvent analysis 900 A14-3

Similarly to the spectral analysis of the resolvent operator, the singular value
decomposition of the harmonic resolvent provides insight into the amplification
mechanisms of disturbances about the time-varying base flow. Specifically, the right and
left singular vectors of the operator are the optimal spatio-temporal forcing and the most
amplified spatio-temporal response patterns, respectively. It will be shown that one can
also seek the optimal spatial forcing and most amplified spatial response at selected
frequency pairs in order to study their cross-frequency amplification mechanisms.

In § 3 we illustrate the method on a system of three ordinary differential equations,
whose low dimensionality and time-periodic dynamics allow us to illustrate the
characteristics of the harmonic resolvent and to draw a natural comparison between the
harmonic resolvent framework and the usual resolvent analysis.

Finally, in § 4 we consider the flow over an airfoil at near-stall angle of attack. This
flow exhibits multichromatic time-periodic dynamics, which we study using the harmonic
resolvent. In particular, we compute the optimal forcing and response modes via the
singular value decomposition of the harmonic resolvent, and we analyse the amplification
mechanisms of perturbations about the periodically time-varying base flow that arises
from the nonlinear dynamics.

2. Mathematical formulation

In this section, we define the harmonic resolvent operator, first for a general nonlinear
system and then for incompressible fluid flows.

2.1. General nonlinear system
We consider the nonlinear autonomous system

d
dt

q(t) = f (q(t)) (2.1)

with state q(t). In three-dimensional incompressible fluid flows, the state is the
three-dimensional vector velocity field along with the scalar pressure.

In the harmonic resolvent framework, we are interested in studying the amplification
mechanisms of small perturbations q′(t) about a time-varying base flow that is periodic
with period T , given by

Q(t) =
∑
ω∈Ωb

Q̂ω ei ωt, (2.2)

with Ωb ⊂ (2π/T)Z. The base flow does not need to satisfy the governing equations and
Ωb usually contains a small subset of frequencies that approximate the dynamics of the
large coherent structures present in the flow. We proceed by seeking perturbations of the
form

q′(t) =
∑
ω∈Ω

q̂′ω ei ωt, (2.3)

with Ω ⊂ (2π/T)Z. Usually Ωb ⊂ Ω , as Ω is the set of temporal frequencies associated
with the flow structures that one wishes to resolve. (In general, the set Ω need not be
restricted to multiples of the fundamental frequency 2π/T , although we do make this
assumption in this paper.) Upon substituting the decomposition q(t) = Q(t)+ q′(t) in (2.1)
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we obtain
d
dt

q′(t) = Dq f (Q(t))︸ ︷︷ ︸
A(t)

q′(t)+ h′(t), (2.4)

where

h′(t) =
[
− d

dt
Q(t)+ f (Q(t))

]
+ o

(‖q′(t)‖) . (2.5)

The first term in (2.5) is the error associated with the base flow not satisfying the governing
equations, while the second represents the higher-order terms in the dynamics. Before
proceeding further, we observe that A(t) is periodic with period T (since Q is periodic),
and it can therefore be represented in terms of a Fourier series, analogous to (2.2). We
then obtain the following expression for the perturbation at frequency ω:

i ωq̂′ω =
∑
α∈Ω

Âω−αq̂′α + ĥ
′
ω ∀ω ∈ Ω. (2.6)

We neglect frequencies ω that are not in Ω . For ease of notation, let q̂′ be the vector of q̂′ω
for all frequencies ω ∈ Ω , and let ĥ

′
be defined similarly. We then define the operator T

by [
T q̂′

]
ω
= i ωq̂′ω −

∑
α∈Ω

Âω−αq̂′α. (2.7)

Before introducing the formal definition of the harmonic resolvent, it is necessary to
address a subtlety. If the base flow Q(t) is an exact solution of (2.1), then T is singular
and its null space contains a vector associated with the neutrally stable direction of phase
shift about the base flow given by the Fourier coefficients of (d/dt)Q(t). Similarly, if
Q(t) is an approximate solution of (2.1), then T is nearly singular along the direction of
phase shift. In either case, effects associated with shifting the original base flow in time
can dominate and obscure the genuine amplification mechanisms of interest. We define
the harmonic resolvent in a way that removes the phase shift and preserves the desired
steady-state periodic response up to a constant shift in time. In particular, we restrict T
to a subspace Σ that is orthogonal to the direction of phase shift given by d̂Q/dt. This is
analogous to constructing a Poincaré map by reducing the dynamics onto a codimension-1
surface pierced by the limit cycle (Guckenheimer & Holmes 2002). We notice that when
we take q̂′ ∈ Σ , (2.6) ensures that h′ must be in the range of the restricted operator T |Σ .
Therefore, we define the harmonic resolvent operator on WΣ = Range(T |Σ) as

H = (T |Σ)−1 . (2.8)

Details on efficient computation with this operator can be found in appendix A.
Finally, after removing the phase shift, (2.6) may be written as

q̂′ = Hĥ
′
, (2.9)

where q̂′ ∈ Σ , and h′ ∈ WΣ now live in compatible codimension-1 subspaces. Therefore,
the harmonic resolvent describes the steady-state dynamics of small periodic perturbations
q̂′ about a periodic base flow in response to a periodic input forcing ĥ

′
, up to a constant

shift in time. Note that, if external inputs are present (such as a control input, or noise
forcing the system), these enter into the formulation in the same way that h′ does, and this
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Harmonic resolvent analysis 900 A14-5

leads to the harmonic transfer function of Wereley (1991). A more thorough discussion of
the characteristics of the harmonic resolvent and its connection with the usual resolvent
operator is given at the end of § 2.2.

2.2. Bilinear system: incompressible fluid flow
We now consider an incompressible fluid flow governed by the Navier–Stokes equations,
given by

∂

∂t
u+ u · ∇u = −∇p+ Re−1∇2u,

∇ · u = 0.
(2.10)

Here, u(x, t) and p(x, t) are the velocity and pressure, respectively, over the spatial domain
X ⊆ R3. For ease of notation, we will drop the explicit dependence on x from here on.
Equation (2.10) can be written compactly as

∂

∂t

[
I 0
0 0

]
︸ ︷︷ ︸

M

[
u(t)
p(t)

]
=

[
Re−1∇2 −∇
−∇· 0

]
︸ ︷︷ ︸

L

[
u(t)
p(t)

]
+

[−u(t) · ∇u(t)
0

]
︸ ︷︷ ︸

g(u(t),u(t))

. (2.11)

We denote the state vector by q = (u, p), and consider perturbations about a periodic base
flow, as in § 2.1,

q(t) = Q(t)+ q′(t) =
∑
ω∈Ωb

Q̂ω ei ωt +
∑
ω∈Ω

q̂′ω ei ωt, (2.12)

where Ωb ⊆ Ω ⊂ (2π/T)Z. As before, we seek an input–output representation for the
perturbations q′. Substituting (2.12) in (2.11), and neglecting frequencies ω /∈ Ω , we obtain

i ωM q̂′ω = Lq̂′ω +
∑
α∈Ω

[
g(Q̂ω−α, q̂′α)+ g(q̂′α, Q̂ω−α)

]+ ĥ
′
ω, ∀ω ∈ Ω, (2.13)

where, as in the previous section, ĥ
′
ω is the Fourier mode of the base flow error along with

the terms that are nonlinear in q̂′ω (see (2.5)). We again let q̂′ denote the vector of q̂′ω for all
frequencies ω ∈ Ω , and define the operator T by[

T q̂′
]
ω
= (i ωM − L)q̂′ω −

∑
α∈Ω

[
g(Q̂ω−α, q̂′α)+ g(q̂′α, Q̂ω−α)

]
. (2.14)

Finally, after removing the phase shift, as per the discussion at the end of § 2.1, (2.13) may
be written compactly as

q̂′ = Hĥ
′
. (2.15)

Also, as specified at the end of § 2.1, inputs such as a control signal or an external
disturbance enter in the system in the same way as h′.

At this point, a few comments on the structure of the harmonic resolvent operator are
in order. First, note that the number of frequencies in the set Ω may be infinite (e.g.
Ω = (2π/T)Z), in which case the harmonic resolvent is an infinite-dimensional operator.
However, in practice, one truncates its dimensionality by selecting a finite number of
frequencies ω ∈ Ω that are considered to be of interest. The dimension of H is therefore
proportional to the number of frequencies in Ω . As mentioned previously, we usually
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consider the frequencies Ωb in the base flow to be a subset of the frequencies Ω of
the perturbations. That is, one usually wishes to study the dynamics of perturbations
at multiple frequencies, about a filtered representation of the large-scale structures that
are observed in the flow. The number of frequencies ω ∈ Ωb affects the accuracy of
the linear operator in representing the nonlinear dynamics of the flow. This becomes
clear once we observe from (2.13) that perturbations at different temporal frequencies
are linearly coupled to one another via the base flow. More precisely, structures at
frequency ω are coupled to structures at frequency α through the base flow at the
frequency difference ω − α. Of course, ω − α needs to be in Ωb if one wishes to
capture the aforementioned interaction. For instance, if the base flow has frequencies
Ωb = {−ω, 0, ω} and we want to study the dynamics of perturbations over the set of
frequencies Ω = {−2ω,−ω, 0, ω, 2ω}, then

T =

⎡
⎢⎢⎢⎢⎣

R−1
−2ω G−ω 0 0 0

Gω R−1
−ω G−ω 0 0

0 Gω R−1
0 G−ω 0

0 0 Gω R−1
ω G−ω

0 0 0 Gω R−1
2ω

⎤
⎥⎥⎥⎥⎦ ,

where

Gωq = −g(Q̂ω, q)− g(q, Q̂ω),

R−1
ω = i ωM − L+ G0.

Note that Rω is the usual resolvent operator at frequency ω (i.e. the resolvent of the
operator linearized about the constant base flow Q̂0). In fact, in the special case that the
base flow is constant (i.e. Ωb = {0}), the harmonic resolvent becomes block diagonal, and
perturbations at different frequencies are decoupled.

Finally, we wish to make a remark about the resolvent formalism. Whether the base
flow is time varying or time invariant, (2.13) is exactly equivalent to the Navier–Stokes
equations if ĥ

′
ω is known. This introduces a convenient splitting of the dynamics into

linear and nonlinear parts, where the linear part is amenable to classical input–output
analyses; this is the point of view taken by McKeon & Sharma (2010), for instance. If ĥ

′
ω

is unknown, but can be modelled as random noise (as in McKeon & Sharma (2010)), the
linear part evaluated about the temporal mean provides useful insight into the dominant
amplification mechanisms. If, on the other hand, ĥ

′
has some structure (e.g. large-scale

coherent structures at some dominant frequency), then the linearization about the temporal
mean may not be useful, if the deviations are large. In the harmonic resolvent framework,
we extend the input–output analysis of the linearized Navier–Stokes operator to flows that
exhibit such large periodic deviations from the mean.

2.3. Global amplification mechanisms from the harmonic resolvent
The mathematical formulation presented in the previous sections leads to a linear
time-periodic input–output system in Fourier space, represented by

q̂′ = Hŵ′, (2.16)

where the harmonic resolvent H governs the dynamics of perturbations about a periodic
base flow Q̂ in response to some periodic forcing ŵ′. There are several ways to view
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the perturbation ŵ′. From the point of view of control theory, ŵ′ can be interpreted as
an external input, which might be chosen to achieve some control objective. In a more
physics-driven approach, ŵ′ can be understood as the frequency-domain representation of
the nonlinearities that feed back into the linear harmonic resolvent. Alternatively, ŵ′ can
be viewed as an external disturbance that perturbs the system around a known periodic
orbit.

In any of these circumstances, one may want to understand the dominant mechanisms
by which space–time inputs are amplified through H . One way to do so is by seeking a
unit-norm space–time input ŵ′ that leads to the most amplified space–time response q̂′.
Formally,

max
ŵ′
〈Hŵ′, Hŵ′〉

subject to 〈ŵ′, ŵ′〉 = 1. (2.17)

It can be shown that (2.17) leads to the eigenvalue problem

H∗Hψ̂ = σ ψ̂, (2.18)

where the optimal unit-norm forcing ψ̂ is the first right singular vector of H , and σ is the
largest singular value. If we left-multiply (2.18) by H and define φ̂ = Hψ̂ we obtain

HH∗φ̂ = σ φ̂, (2.19)

from which we can conclude that the optimal (most amplified) response, φ̂, is the
corresponding left singular vector of H . We will refer to the right singular vectors of H
as input modes and we will refer to the left singular vectors as output modes.

Proceeding further, the response of the linear time-periodic system to an arbitrary input
ŵ′ can be expressed as a linear combination of input and output modes of the harmonic
resolvent, as follows:

q̂′ = Hŵ′ =
N−1∑
j=1

σjφ̂j ψ̂
∗
j ŵ′︸︷︷︸

〈ŵ′,ψ̂ j〉

, (2.20)

where φ̂j, ψ̂ j ∈ CN . Observe that we sum to N − 1 since, as per the discussion at the end of
§ 2.1, we have constrained the range of H to an (N − 1)-dimensional subspace orthogonal
to d̂Q/dt. Equation (2.20) sheds some light on the information contained within the output
and input modes. In particular, the output modes φ̂j form an orthonormal basis for the
range of H and identify the spatio-temporal structures that are preferentially excited in
response to some external input. The input modes ψ̂ j form an orthonormal basis for the
domain of H and identify the spatio-temporal structures that are most effective at exciting
an energetic response. That is, the input modes relate to the spatio-temporal sensitivity
of the flow to external inputs. This concept can be easily understood in terms of the inner
product in the underbrace of (2.20). As an example, let us consider a rank-1 approximation
of H and assume that σ1 ≈ 1. If the external input ŵ′ aligns poorly with the input mode
ψ̂1, then 〈ŵ′, ψ̂1〉  1 and consequently ‖q̂′‖  1, meaning that ŵ′ is not effective at
exciting a very energetic response through the harmonic resolvent. On the other hand, if
the external input aligns well with ψ̂1, then 〈ŵ′, ψ̂1〉 ≈ ‖ŵ′‖. Consequently q̂′ ≈ φ̂1‖ŵ′‖
and ‖q̂′‖ ≈ ‖ŵ′‖. In this case ŵ′ is (close to) optimal and it excites the (close to) optimal
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900 A14-8 A. Padovan, S. E. Otto and C. W. Rowley

most energetic response. Understanding the sensitivity information contained within the
input modes is especially important if one is interested in controlling the flow. For instance,
if ŵ′ is a chosen control input, it is advisable to design it in such a way that 〈ŵ′, ψ̂ j〉 is
maximized.

The singular values σj can be understood as the gains on the input–output pairs ψ̂ j, φ̂j

and they provide information about the rank of the harmonic resolvent. For instance, if σj

is very small, then the corresponding modes have little effect on the input–output response
and can be neglected. Often the effective rank r of H (i.e. the number of singular values
that exceed some threshold) is such that r  N − 1, and H may be approximated as

H ≈
r∑

j=1

σjφ̂jψ̂
∗
j . (2.21)

We would like to add that the low rank property of the harmonic resolvent could likely
be exploited to develop reduced-order models for the nonlinear dynamics of the flow
about the periodic orbit under consideration. For instance the dimension of the nonlinear
algebraic system (2.6) in the frequency domain could be reduced by projecting onto the
leading input and output modes of the harmonic resolvent. However, investigating this idea
further is beyond the scope of the present work.

2.4. Cross-frequency amplification mechanisms from the harmonic resolvent
The global analysis that was carried out in the previous section can be easily extended to
selected frequency pairs or selected subsets of Ω . Since the harmonic resolvent accounts
for the coupling between different frequencies, we may ask which cross-frequency
interactions are most significant. More precisely, for given α, ω ∈ Ω , we can seek the
unit-norm forcing at frequency α that triggers the most amplified response at frequency ω.
This corresponds to the following optimization problem:

max
ŵ′α

〈q̂′ω, q̂′ω〉
subject to 〈ŵ′α, ŵ′α〉 = 1,

(2.22)

where
q̂′ω = Hω,αŵ′α, (2.23)

and where Hω,α is the block of H that couples structures at frequency ω with structures
at frequency α. It can be shown that the optimal input ŵ′α and the optimal output q̂′α
are, respectively, the first right singular vector and the first left singular vector of Hω,α.
The corresponding singular value, σω,α, is the gain on the ω, α cross-frequency pair. For
different values of ω, α ∈ Ω , the magnitudes of σω,α provide a measure to determine which
cross-frequency couplings are responsible for the development of the structures that are
observed in the full nonlinear flow.

3. Application to a three-dimensional toy model

The objective of this section is to illustrate, through a simple model, the benefits of using
the harmonic resolvent framework to analyse fluid flows that exhibit features that arise
from nonlinear mechanisms. The signature of such flows is a non-monochromatic energy
spectrum, which highlights the action of the nonlinear term in distributing energy across
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Harmonic resolvent analysis 900 A14-9

selected frequencies. We consider a three-dimensional system of ordinary differential
equations defined as follows:

ẋ = μx − γ y − αxz− βxy,

ẏ = γ x + μy − αyz+ βx2,

ż = −αz+ α
(
x2 + y2

)
,

⎫⎬
⎭ (3.1)

where ẋ denotes dx/dt, and α, γ, μ > 0. A simple rescaling of time allows us to take
γ = 1 without loss of generality, so henceforth we assume γ = 1.

Although we do not claim that this toy model represents any specific fluid flow, it does
share some features with the Navier–Stokes equations. Like the Navier–Stokes equations,
the nonlinearities are quadratic and energy conserving. Recall that a dynamical system
dq/dt = f (q) is energy conserving if

d
dt

1
2
‖q‖2 = 〈 f (q) , q〉 = 0. (3.2)

For the Navier–Stokes equations, with typical boundary conditions on u (e.g. u = 0 on
the boundary, or u tangent to the boundary), one finds 〈u · ∇u, u〉 = 0, so the nonlinear
terms in (2.10) are energy conserving. Similarly, for our toy model, the nonlinear terms
f (x, y, z) = (−αxz− βxy,−αyz+ βx2, α(x2 + y2)) satisfy f (q) · q = 0, and hence are
energy conserving. In addition, we remark that the system (3.1) is closely related to the
reduced-order model of the flow past a cylinder used by Noack et al. (2003), and the
well-known Stuart–Landau model (Stuart 1958).

It is useful to transform the model (3.1) to polar coordinates; with x = r cos θ and y =
r sin θ , the dynamics become

ṙ = (μ− αz)r, (3.3a)

θ̇ = 1+ βr cos θ, (3.3b)

ż = α(r2 − z). (3.3c)

In these coordinates, it is clear that if β2 < α/μ, there is a limit cycle at r2 = z = μ/α.
Furthermore, by integrating (3.3b), we find that the period of the limit cycle is T =
2π/

√
1− β2μ/α, so the fundamental frequency of the limit cycle is

ω =
√

1− β2μ/α. (3.4)

We proceed by briefly analysing how the dynamics of the system change as one varies the
parameter β.

When β = 0, the dynamics in the θ direction become θ̇ = 1, so the system is rotationally
symmetric about the z-axis. Moreover, the limit cycle is monochromatic, with frequency
ω = 1. Figure 1 shows the limit cycle and its energy spectrum, for μ = α = 1/5 and
β = 0.

Next, we consider the dynamics for 0 < β <
√

α/μ. There is still a limit cycle at r2 =
z = μ/α, but now we see from (3.3b) that there is an asymmetry: when x > 0, the angular
speed θ̇ increases, and when x < 0, the angular speed decreases. This will cause the state
to spend more time on the left half of the limit cycle, and so the temporal mean is shifted
to the left, as shown in figure 2(b). In addition, multiple harmonics are introduced into the
frequency spectrum, as shown in figure 2(a). Note also that the fundamental frequency of
the limit cycle is now slightly less than 1 (ω = 0.9798), according to (3.4).
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FIGURE 1. Results for the toy problem (3.1) with β = 0 and μ = α = 1/5, showing (a) energy
spectrum on the limit cycle and (b) (projected) limit cycle colour coded according to the angular
speed θ̇ (3.3b). The marker located at (x, y) = (0, 0) in panel (b) indicates the temporal mean of
the limit cycle.
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FIGURE 2. Analogue of figure 1 for β = 1/5, showing (a) energy spectrum and (b) (projected)
limit cycle. Higher harmonics are present in the energy spectrum. Furthermore, the angular speed
varies around the limit cycle according to (3.3b) and the temporal mean is consequently shifted
away from 0.

Before proceeding, we remark that frequency prediction, global stability analysis and
the geometric decay of Fourier modes in flows that exhibit time-periodic limit cycles have
been the subject of extensive studies. Dušek, Gal & Fraunié (1994), for instance, developed
a theoretical framework to explain the observed hierarchy of harmonics in the spectrum
of the wake of a circular cylinder. More recently, Sipp & Lebedev (2007) studied the
linearized Navier–Stokes operators about base and mean flows in the cylinder wake and in
an open cavity. Finally, Turton, Tuckerman & Barkley (2015) presented results regarding
the prediction of the limit cycle frequency in thermosolutal convection.

3.1. Comparison between the harmonic resolvent framework and resolvent analysis
In this section we compare the effectiveness of different linearizations in predicting the
response of the nonlinear system to some external periodic forcing. For this purpose, we
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introduce forcing to (3.1) with parameters μ = α = β = 1/5

ẋ = μx − y − αxz− βxy + w′1,
ẏ = x + μy − αyz+ βx2 + w′2,

ż = −αz+ α
(
x2 + y2

)
⎫⎬
⎭ (3.5)

and define w′(t) = (ε sin(ωt), ε cos(ωt)) as our external periodic forcing at the
fundamental frequency ω = 0.9798 (from (3.4)) and with ε = 0.1. The forcing w′(t) can
be expanded in a Fourier series

w′(t) =
∑

k∈{−1,1}
ŵ′ke

i kωt, (3.6)

and the dynamics of perturbations q′(t) about a given base flow in response to w′(t) can be
written as

q̂′ = HBŵ′, (3.7)

where H is the harmonic resolvent evaluated about the chosen base flow and B is a
block-diagonal operator through which the input ŵ′ enters the system. Throughout this
section we consider perturbations with spectral energy content up to the seventh harmonic
of the fundamental frequency

q′(t) =
7∑

k=−7

q̂ke
i kωt, Ω = {−7ω,−6ω, . . . , 7ω}, (3.8)

and we compare the predictions obtained by linearizing about the temporal mean Ωb =
{0} (see the marker in figure 2b) to predictions obtained by linearizing about the exact
limit cycle Ωb = {−3ω, . . . , 3ω} (see figure 2a). (Recall that linearizing about the mean
is equivalent to performing resolvent analysis.) The results are compared against a ground
truth computed by numerical integration of (3.5). In recalling from § 2.1 that the range of
the harmonic resolvent is orthogonal to any phase shift about the chosen base flow, we
warn the reader that in order to draw a direct comparison between the harmonic resolvent
results and the nonlinear simulation, it may be necessary to phase match the forced solution
q(t) from (3.5) to the base flow Q(t). Specifically, we advance (3.5) for a few forcing
periods until transients have decayed, and then we phase match in the least squares sense

min
φ∈R

∑
ω∈Ωb

∣∣∣∣q̂ω ei ωφ − Q̂ω

∣∣∣∣2
2. (3.9)

Finally, the aforementioned ground truth perturbation is given by q′(t) = q(t)−Q(t).
Figure 3 shows the energy spectrum of the post-transient perturbations q̂′ in response

to the periodic input ŵ′ as well as the state evolution q′(t) over one fundamental period.
We observe from the nonlinear simulation that forcing at frequency ω leads to a response
with energy content also at the zeroth, second and third harmonics. We observe also that
the prediction obtained by linearizing about the exact limit cycle accurately matches the
ground truth. This is because the time-varying base flow about which we evaluate the
harmonic resolvent couples structures at different frequencies and we are therefore able to
predict (to first order) the frequency off-scatter that is observed in the nonlinear system.
The extent to which we are able to capture cross-frequency interactions is given by the
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FIGURE 3. Response of the system (3.5) to periodic forcing at the fundamental frequency ω =
0.9798. (a) Normalized spectrum of the perturbation q′(t) and (b) state evolution over one period
T = 2π/ω. Symbols: ∗, Ground truth computed by numerical integration of (3.5); �, harmonic
resolvent prediction with Ωb = {−3ω, . . . , 3ω}; �, harmonic resolvent prediction with Ωb = {0}
(equivalent to resolvent analysis).

block singular values of H shown in figure 4(b). We colour code the cross-frequency blocks
according to the fractional variance

Ej,k =

3∑
m=1

σ 2
m,( j,k)

N−1∑
n=1

σ 2
n

, (3.10)

where σm,( j,k) is the mth singular value of the ( jω, kω) block of H and σn is the nth
singular value of H . The normalization is such that

∑
j,k Ej,k = 1. We observe from the

1ω-column in figure 4(b) that forcing at the fundamental frequency may trigger a response
with spectral energy content up to the third harmonic, and that is precisely what the energy
spectrum in figure 3(a) confirms.

Linearizing about the temporal mean, however, does not provide an accurate
representation of the response of the nonlinear system to the given periodic forcing at
frequency ω. First, observe that through this linearization we overestimate the spectral
energy at the fundamental frequency. Second, it is clear from figures 3(a) and 3(b) that
the prediction is monochromatic at frequency ω. This is because H is block diagonal, as
mentioned at the end of § 2.2 and illustrated in figure 4(a). Therefore, no cross-frequency
interaction can be accounted for through the base flow, and forcing at frequency ω will
only produce a response at the same frequency.

4. Application to flow past an airfoil at near-stall angle of attack

We now consider two-dimensional incompressible flow past an airfoil at an angle
of attack, under conditions for which there is unsteady vortex shedding. We perform
numerical simulations using the immersed boundary formulation of Taira & Colonius
(2007), to compute the flow past a NACA 0012 airfoil at angle of attack of 20◦ and
Reynolds number of 200 based on the chord. The immersed boundary formulation
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FIGURE 4. Fractional variance (3.10) contained within each block of the harmonic resolvent for
the toy model (3.1) (a) evaluated about the temporal mean Ωb = {0} and (b) evaluated about the
exact periodic solution Ωb = {kω}k∈{−3,...,3}.

enforces no-slip boundary conditions at the surface S of the airfoil by imposing a body
force f , as expressed below

∂

∂t
u+ u · ∇u = −∇p+ Re−1∇2u+

∫
S

f (ξ)δ(ξ − x) dξ ,

∇ · u = 0,

u(ξ) =
∫
X

u(x)δ(x − ξ) dx = 0, for ξ ∈ S,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.1)

where u(x, t) and p(x, t) are the velocity and pressure over the spatial domain X = R2,
and δ is the Dirac delta function. The third equation in (4.1) is a set of algebraic constraints
that enforce the no-slip boundary condition on the surface S . We refer the reader to Taira
& Colonius (2007) for a detailed discussion of the method.

We centre the half-chord of the airfoil at the origin of the computational domain of
size [−4, 12]× [−2.5, 2.5] and we discretize the domain on a 800× 250 grid. We impose
a uniform inflow boundary condition at the inlet, slip-wall boundary conditions at the
top and bottom boundaries and a convective outflow boundary condition at the outlet.
The vorticity spectrum is shown in figure 5(a), while a representative snapshot of the
mean-subtracted vorticity field on the limit cycle is shown in figure 5(b). We observe that
up to five harmonics of the fundamental frequency ω = 2.40 are active on the limit cycle,
suggesting that non-trivial nonlinear mechanisms are at play.

In the upcoming analysis we take our state vector to be q = (u, p, f ) and we expand
the dynamics about a chosen base flow Q(t). We omit the spatial dependence of the
states for notational simplicity. Moreover, we consider perturbations q′(t) over the set of
frequencies Ω = {−7ω, . . . , 7ω}. Upon linearizing the dynamics about the chosen base
flow we obtain the linear input–output system

q̂′ = Hŵ′ =
N−1∑
j=1

σjφ̂jψ̂
∗
j ŵ′, (4.2)

where ŵ′ is the frequency-domain representation of the nonlinear terms that feed back into
the linear harmonic resolvent. The left singular vector φ̂j is the jth global output mode
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FIGURE 5. Nonlinear simulation of flow past an airfoil, showing (a) global vorticity spectrum
and (b) snapshot of vorticity fluctuation on the limit cycle.

and the right singular vector ψ̂ j is the jth global input mode. We wish to specify that
H is not computed explicitly since it is a dense operator of prohibitive size N ∼ O(107).
Specifically, given the n-dimensional state vector q′ and 15 frequencies in Ω , the size
of the harmonic resolvent is N = 15n. Instead, given T , which is a sparse operator
whose non-zero entries depend on the spatial discretization scheme used on the governing
equations, we computed the leading singular values and singular vectors of H using one of
the randomized singular value decomposition algorithms in Halko, Martinsson & Tropp
(2011). The implementation was carried out with an in-house solver based on the PETSc
(Balay et al. 2019) and SLEPc (Hernandez, Roman & Vidal 2005) libraries. Additional
details on the implementation can be found in appendix A.

4.1. Amplification mechanisms about a time-varying base flow
We linearize the dynamics in (4.1) about a time-periodic base flow over the set of
frequencies Ωb = {−3ω, . . . , 3ω} with ω = 2.40 as in figure 5(a), and we compute the
singular value decomposition of the harmonic resolvent.

First, note from figure 6(a) that there is more than an order of magnitude separation
between the first and the second singular values of the harmonic resolvent and we can
therefore argue that the harmonic resolvent has low-rank structure.

Second, figure 6(b) shows that the nonlinear flow is very susceptible to perturbations at
the fundamental frequency, since the block singular values of H suggest that introducing
forcing at ω has an effect on flow structures up to the fourth harmonic. Likewise, we
can conclude that the flow is less sensitive to perturbations at higher harmonics of the
fundamental frequency as we observe that the singular values of the blocks governing
those dynamics are one (or more) orders of magnitude less than those in the 1ω-column.

We may also draw conclusions about the sensitivity of the flow from the kω-entries
of the first input mode of H , shown in figure 7. Recall from the previous sections
that the input modes describe the spatio-temporal structures that are most effective at
exciting a response, while the output modes describe the spatio-temporal structures that
are preferentially excited by these inputs. Specifically, we learn from the magnitude of the
entries of the input mode that the flow is most sensitive to perturbations at frequency ω
and it is the least sensitive to perturbations at frequency 3ω. Moreover, the mode shapes of
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FIGURE 6. Singular values of the harmonic resolvent for flow past an airfoil with Ωb =
{−3ω, . . . , 3ω}, Ω = {−7ω, . . . , 7ω} and ω = 2.40, showing (a) singular values of H and
(b) blockwise fractional variance Ej,k defined by an expression similar to (3.10).

the entries of the input mode suggest that the flow is very sensitive to perturbations that are
spatially localized around the body, while the output mode entries in figure 7 illustrate the
spatial structures that should arise in the flow in response to a disturbance or control input
that aligns well with the input mode. In order to verify this statement, we introduce a small
amplitude forcing in the flow by sinusoidally moving the airfoil in the vertical direction,
with velocity

v = εω cos ωt. (4.3)

The forcing frequency is taken to be the fundamental frequency of vortex shedding, ω =
2.40, while ε = 0.01.

As per the discussion in § 3.1, in order to draw a direct comparison with the output
modes of the harmonic resolvent operator we proceed as follows. We let the flow reach
the limit cycle Q(t) whose spectrum is shown in figure 5(a) and then we introduce
the sinusoidal motion described in (4.3). We let the flow evolve for a few periods until
transients have decayed and then we phase match the forced solution q(t) to the base flow
Q(t) according to (3.9). Finally, the perturbation introduced by the sinusoidal motion is
q′(t) = q(t)−Q(t).

Figure 8 shows the vorticity of the first few Fourier modes computed from q′(t). These
highlight the vortical structures that result when the flow is forced sinusoidally according
to (4.3). Remarkably, the first output mode of the harmonic resolvent, shown in figure 7,
provides a surprisingly accurate prediction of the structures, at all four frequencies shown
in figure 8. This close agreement is presumably a consequence of the low-rank structure of
the harmonic resolvent (see figure 6): regardless of the type of forcing, the resulting flow
perturbations will resemble the output modes shown in figure 7. The fact that the input
modes shown in figure 7 are supported near the airfoil suggests that the flow is sensitive
to perturbations near the airfoil. While this result is not surprising, the simulations with
sinusoidal motion of the airfoil confirm this behaviour.

4.2. Amplification mechanisms about the temporal mean
We now evaluate the harmonic resolvent about the temporal mean. We recall that in
this case, with Ωb = {0}, the harmonic resolvent becomes block diagonal, where each
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FIGURE 7. Real part of the vorticity field computed from the input mode and the output mode
associated with σ1 in figure 6(a).
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FIGURE 8. Real part of the Fourier modes of the vorticity perturbations for the airfoil with
sinusoidal motion (4.3) for frequencies 0−3ω.
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FIGURE 9. Singular values for the harmonic resolvent of flow past an airfoil, with Ωb =
{0}, Ω = {−7ω, . . . , 7ω} and ω = 2.40, showing (a) singular values of H and (b) blockwise
fractional variance Ej,k defined by an expression similar to (3.10).

diagonal block is the usual resolvent operator at its corresponding frequency. Once again,
we consider perturbations over the set of frequencies Ω = {−7ω, . . . , 7ω}. The first five
singular values of the harmonic resolvent H are shown in figure 9(a), which shows that
the effective rank of H is 2. Here, σ1 = σ2 ≈ 6× 103, where σ1 is the singular value
associated with the block at frequency ω, and σ2 corresponds to the block at frequency
−ω. In figure 10 we show the first input and output pairs computed from the singular
value decompositions of the resolvent operators evaluated at the frequencies of interest.

It appears that meaningful information is obtained only at the fundamental frequency
ω in figure 10. Specifically, the ω-component of the input mode provides accurate
information on the sensitivity of the flow, since it is analogous to the ω-component of
the input mode of the harmonic resolvent operator evaluated about the time-varying base
flow in figure 7(c). The corresponding output mode in figure 10, however, does not capture
the qualitative behaviour that has been observed in the forced nonlinear simulation, shown
in figure 8.

Finally, it appears that no meaningful information is provided by the resolvent operators
at the zero frequency or at higher harmonics of the fundamental frequency ω. The
reason behind this can be understood by looking at the diagonal blocks of figures 9(b)
and 6(b). Both, in fact, suggest that the temporal mean (block-diagonal entries of the
harmonic resolvent) does not amplify disturbance at higher frequencies, meaning that
we cannot expect the resolvent operators at frequencies kω with k /= 1 to provide any
meaningful information about the flow structures at those frequencies. Furthermore,
figure 6 suggests that the presence of higher harmonics is exclusively due to perturbations
at the fundamental frequency ω that scatter off the base flow to excite a response at higher
harmonics. It appears that nonlinear mechanisms dominate the dynamics of this flow, and
it is therefore necessary to perform a linearization about a time-varying base flow in order
to study the amplification mechanisms.

The brief quantitative analysis that was conducted in this section attempts to show how
the information contained within the harmonic resolvent can be used to draw conclusions
about the physics of the flow. In turn, the understanding of the flow physics can be
leveraged for control purposes. For instance, the sensitivity of the flow with respect to
some external forcing at different frequencies is of utmost importance in actuator design
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FIGURE 10. Real part of the vorticity field computed from the first input and output pairs of
the resolvent operators at the given frequencies. The corresponding leading singular values are
σ ≈ 10, σ ≈ 6× 103 and σ ≈ 5 for frequencies 0, ω and 2ω, respectively.

and placement. Moreover, the output modes at different frequencies provide insight into
the first-order response of the flow to the control input. In turbulence applications and in
the problem of reattachment of separated flows (Deem et al. 2018), for example, one may
be interested in understanding how the zero frequency (temporal mean) is affected by a
harmonic input. Finally, the cross-frequency information contained within the harmonic
resolvent (see figure 6b, for example) can provide useful insight into the energy transfer
mechanisms between different time scales in turbulent flows.

5. Conclusion

In this paper we have considered small periodic perturbations about a periodically
time-varying base flow. We have linearized the incompressible Navier–Stokes equations
about this time-varying base flow, and defined the corresponding harmonic resolvent
operator, a linear operator that describes the evolution of these perturbations, including
cross-frequency interactions. In particular, perturbations at frequency ω are coupled to
perturbations at frequency α through the base flow at frequency ω − α. If, however, the
dynamics are linearized about a steady base flow, as in the standard resolvent framework,
the coupling between structures at different frequencies is lost.

We have shown that the right and left singular vectors of the harmonic resolvent describe
the dominant spatio-temporal amplification mechanisms, for perturbations about the
chosen base flow, and we showed how one can quantify the cross-frequency interactions in
the flow by analysing the block-singular values of the harmonic resolvent. We illustrated
the approach on a three-dimensional toy model, and then applied the analysis to the flow
over an airfoil at an angle of attack. For this example, the leading output mode (left
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singular vector) of the harmonic resolvent operator accurately describes the flow structures
that develop in response to periodic forcing near the body. For this example, linearizing
about a periodic base flow is essential: if, by contrast, one linearizes about a steady base
flow as in the standard resolvent analysis, inaccurate flow structures are obtained, and
cross-frequency interactions cannot be captured.

Beyond the study of amplification mechanisms presented in this paper, we believe
that the harmonic resolvent framework may also provide valuable tools for reduced-order
modelling and control of flows near periodic orbits. We leave these ideas for future work.
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Appendix A

In this appendix we address how to approximate the harmonic resolvent operator H
from the sparse operator T during practical computations. As discussed in § 4, one can
easily assemble the sparse operator T , whose non-zero entries depend on the spatial
discretization scheme used on the governing equations. Moreover, as discussed in § 2.1, T
is singular if the base flow satisfies the dynamics exactly. In practice, however, round-off
errors, truncation errors or an intentional perturbation make T invertible, but with a near
singularity along the direction of phase shift.

The main difficulty in computing with the harmonic resolvent given in (2.8) is defining
vectors in its proper domain, namely WΣ = Range(T |Σ). To do this, we leverage the
invertibility of T to construct a vector z = (T ∗)−1d̂Q/dt that is orthogonal to WΣ . Letting
v = d̂Q/dt/‖d̂Q/dt‖ and u = z/‖z‖, we define projection operators

PΣ = I − vv∗ and PW = I − uu∗ (A 1)

into the spaces Σ and WΣ , respectively. This allows us to work directly with the operator

H̃ = PΣT−1PW = T−1PW, (A 2)

which is identical to H on WΣ = Range(PW) and is zero on the orthogonal complement
W⊥Σ . It is also clear that H̃

∗ agrees with H∗ on Σ and is zero on the orthogonal complement
Σ⊥. Therefore, the non-zero singular components of H and H̃ agree, giving us a practical
way to study the amplification mechanisms in § 2.3 by performing randomized singular
value decomposition on H̃ .

Specifically, to apply H̃ and H̃
∗ to a vector as needed for the randomized singular value

decomposition algorithm in Halko et al. (2011), the following algorithm is used. We begin
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by performing the following precomputation steps:

(i) assemble the operator T ;
(ii) perform an LU decomposition of T (we use MUMPS); and

(iii) solve T ∗z = d̂Q/dt, then compute u = z/‖z‖ and v = d̂Q/dt/‖d̂Q/dt‖.
Given a vector w, we compute q = H̃w as follows:

(i) project out the component of w along u: w′ = w− (u∗w)u;
(ii) solve T q = w′ using the previously computed LU decomposition; and

(iii) reorthogonalize q (if necessary due to round-off): q← q− (v∗q)v.

Given a vector q, we compute w = H̃
∗q as follows:

(i) remove phase shift (to avoid round-off errors): q′ = q− (v∗q)v;
(ii) solve T ∗w′ = q′ using the previously computed LU decomposition; and

(iii) project out the component of w′ along u: w = w′ − (u∗w′)u.

Remark A.1. If T is singular, we can perturb it by T ← T + εI , where I is the identity.
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