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Reduced-order models for flows that exhibit time-periodic behavior (e.g., flows in turbomachinery 
and wake flows) are critical for several tasks, including active control and optimization. 
One well-known procedure to obtain the desired reduced-order model in the proximity of a 
periodic solution of the governing equations is continuous-time balanced truncation. Within 
this framework, the periodic reachability and observability Gramians are usually estimated 
numerically via quadrature using the forward and adjoint post-transient response to impulses. 
However, this procedure can be computationally expensive, especially in the presence of slowly-
decaying transients. Moreover, it can only be performed if the periodic orbit is stable in the sense 
of Floquet. In order to address these issues, we use the frequency-domain representation of the 
Gramians, which we henceforth refer to as frequential Gramians. First, these frequential Gramians 
are well-defined for both stable and unstable dynamics. In particular, we show that when the 
underlying system is unstable, these Gramians satisfy a pair of allied differential Lyapunov 
equations. Second, they can be estimated numerically by solving algebraic systems of equations 
that lend themselves to heavy computational parallelism and that deliver the desired post-
transient response without having to follow physical transients. The computational gains that we 
can achieve by using the frequency domain are demonstrated on a simple three-dimensional toy 
model that exhibits time-periodic dynamics. We then demonstrate this method on a periodically-
forced axisymmetric jet at Reynolds numbers 𝑅𝑒 = 1250 and 𝑅𝑒 = 1500. At the lower Reynolds 
number, the flow strongly amplifies subharmonic perturbations and exhibits vortex pairing about 
a Floquet-stable 𝑇 -periodic solution. At the higher Reynolds number, the underlying 𝑇 -periodic 
orbit is unstable and the flow naturally settles onto a 2𝑇 -periodic limit cycle characterized by 
pairing vortices. At both Reynolds numbers, we compute a reduced-order model and we use it to 
design a feedback controller and a state estimator capable of suppressing vortex pairing.

1. Introduction

Physical processes are often governed by partial differential equations, which, upon spatial discretization, lead to high-
dimensional systems of ordinary differential equations. Although recent advances in computational resources have allowed us to 
simulate these systems quite efficiently, tasks such as controller design and optimization can seldom be performed in the original 
high-dimensional space. It therefore becomes necessary to develop low-order models that capture the salient features of the underly-
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ing dynamics. In this paper, we focus on systems that exhibit time-periodic behavior, and we seek a low-order representation of the 
dynamics in the proximity of a time-periodic solution of the governing equations.

While there are many existing methods for model reduction of both linear and nonlinear systems, here we provide an overview 
of the linear techniques based on “balancing”. In the simplest of cases, i.e., the balancing of a linear time-invariant system, one 
seeks a reduced-order model by first identifying a change of coordinates where two matrices known as reachability and observability 
Gramians are equal and diagonal. This method, initially introduced by Moore [23], has become increasingly popular because of 
well-known a-priori error bounds (see, e.g., Dullerud and Paganini [7]) and because of its relatively low computational cost. More 
recently, the balanced proper orthogonal decomposition (BPOD) framework introduced by Rowley [27] led to a further reduction 
of the computational cost in systems with a large number of outputs, and the method has since become a benchmark for model 
reduction of linear systems as well as of nonlinear systems that evolve near a steady state. Although balanced truncation and BPOD 
were originally conceived for stable systems, they have also been applied to unstable systems upon slight modifications. For instance, 
Ahuja and Rowley [1] proposed splitting the stable and unstable eigenspaces, and balancing the stable dynamics, while treating the 
unstable eigenspace exactly. Alternatively, Dergham et al. [6] obtained balanced reduced-order models of an open cavity flow with 
an underlying unstable steady state by leveraging the frequency-domain representation of the Gramians, which is well-defined for 
both stable and unstable systems (see, e.g., Godunov [11]). Finally, Flinois et al. [9] showed that the original algorithm developed 
for stable systems could be used to balance unstable systems without the a-priori splitting of the stable and unstable eigenspaces.

Balanced truncation has also been used for discrete-time periodic systems (see, for instance, Longhi and Orlando [17], Varga [31]
and Farhood et al. [8]). More recently, a procedure similar to BPOD was developed by Ma et al. [20] by lifting the discrete-time 
periodic system into a higher-dimensional linear time-invariant system. That formulation was then applied in Ma [19] for controller 
design to stabilize an unstable periodic orbit in the wake of a flat plate. The balancing of linear time-varying systems in their 
continuous-time formulation is discussed in Sandberg and Rantzer [28], and error bounds for monotonically-balanced and non-
monotonically-balanced systems are presented. Continuous-time balancing was also performed in Lang et al. [16], where the authors 
presented an implicit time integration method to solve the differential Lyapunov equations that govern the dynamics of the (time-
varying) reachability and observability Gramians. Despite the fact that balancing for periodic systems is well-understood, to the 
best of our knowledge it is rarely used in practice in very high-dimensional systems such as two-dimensional or three-dimensional 
fluid flows. In fact, the (discrete-time) application in Ma [19] is the only one we are aware of. This is most likely due to the fact 
that computing the Gramians for a time-varying system can be expensive. In particular, this requires computing the post-transient 
response to forward and adjoint impulses, and the computational cost can grow significantly if the underlying dynamics exhibit 
slowly-decaying transients. Furthermore, this procedure to estimate the Gramians can only be performed on systems that are stable 
in the sense of Floquet, unless the stable and unstable Floquet eigenspaces are treated separately (as in Ma et al. [20]) at additional 
computational cost. Here, we propose to address these problems using the frequency-domain representation of the Gramians. We 
henceforth refer to these Gramians as frequential Gramians.

As in time-invariant systems, if the underlying system is stable, the frequential Gramians agree with the time-domain represen-
tation of the Gramians. Unlike their time-domain counterparts, the frequential Gramians are also well-defined if the dynamics are 
unstable, and we show that they satisfy a pair of allied differential Lyapunov equations. Consequently, we can use these Gramians 
to obtain balanced low-order models of unstable systems, and this is particularly important if we wish to design reduced-order 
stabilizing controllers. We shall also see that while the frequential Gramians for time-invariant systems are defined in terms of the 
resolvent operator associated with the underlying system, the frequential Gramians for time-periodic systems are defined in terms of 
the harmonic resolvent operator [24,25,33].

From a computational standpoint, the use of frequential Gramians can lead to computational savings. Specifically, estimating the 
Gramians no longer requires performing impulse responses in the time domain, but it simply amounts to solving algebraic systems of 
equations that lend themselves to heavy computational parallelism and that deliver the desired post-transient solution without having 
to follow the physical transients. As discussed in section 4, additional savings can be obtained by leveraging some of the symmetries 
of the harmonic resolvent operator, which, as previously mentioned, is used to define the frequential Gramians. More thorough 
computational considerations are presented in section 5, where we also present performance results using a three-dimensional toy 
model that exhibits time-periodic dynamics.

We use this framework to compute reduced-order models for a periodically-forced axisymmetric incompressible jet at Reynolds 
numbers 𝑅𝑒 = 1250 and 𝑅𝑒 = 1500. At 𝑅𝑒 = 1250, the flow exhibits a Floquet-stable periodic orbit of period 𝑇 , characterized by an 
unpaired vortex street. However, as discussed in Shaabani-Ardali et al. [30] and Padovan and Rowley [25], this configuration is 
extremely sensitive to period-doubling perturbations, so that any small-amplitude perturbation will cause neighboring vortices to 
merge and pair. Here, we compute a reduced-order model of the dynamics in the proximity of the periodic orbit, and we then design 
a feedback controller and an observer that successfully suppress vortex pairing in the presence of disturbances. At 𝑅𝑒 = 1500 the 
underlying 𝑇 -periodic orbit is linearly unstable, so any small perturbation will grow and eventually settle onto a 2𝑇 -periodic limit 
cycle characterized by pairing vortices. As before, we compute a reduced-order model and we design a controller and an observer to 
restabilize the 𝑇 -periodic orbit and suppress vortex pairing.

Although, to the best of our knowledge, this is the first time that frequential Gramians are used in the balancing of time-
periodic systems, it is important to mention related work that leverages the frequency-domain representation of time-periodic 
systems. For instance, Jovanović and Fardad [14] proposed solving a sequence of simplified Sylvester and Lyapunov equations 
to approximate the 2 norm of linear periodically time-varying system, where the periodic component is small. Their approach 
was then implemented on a pressure-driven channel subject to streamwise oscillations of the bottom wall. The same approach 
2

was used in Moarref and Jovanović [21] and Moarref and Jovanović [22] to design controllers to suppress the onset of tur-
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bulence in a channel, and to achieve turbulent drag reduction in a channel, respectively. Similar tools were also used in Ran 
et al. [26] to design spanwise-periodic riblets with the objective of reducing drag in a turbulent channel. For a thorough overview 
of frequency-domain methods for the analysis of fluids flows we refer to the review paper by Jovanović [13] and references 
therein.

2. Frequential reachability and observability Gramians

In continuous-time balanced truncation for time-periodic systems, one seeks a time-periodic reduced-order model by first identi-
fying a change of coordinates that simultaneously diagonalizes the time-periodic reachability and observability Gramians, which will 
be defined below. While the balancing procedure will be discussed in detail in section 6, for now, it suffices to say that computing the 
Gramians (or their factorization) is the most computationally expensive step. In this section we therefore focus on the computation 
of the Gramians and we show that, similarly to the linear time-invariant case, these can be defined in the frequency domain. We also 
show that the frequency-domain representation of the Gramians is well defined even when the underlying dynamics are unstable; 
more specifically, the frequential Gramians satisfy a pair of differential Lyapunov equations.

2.1. Preliminaries

We begin by considering a linear time-periodic system with state 𝒙(𝑡) ∈ℝ𝑁 , control input 𝒖(𝑡) ∈ℝ𝑀 , and output 𝒚(𝑡) ∈ℝ𝑄

d
d𝑡
𝒙(𝑡) =𝑨(𝑡)𝒙(𝑡) +𝑩(𝑡)𝒖(𝑡)

𝒚(𝑡) =𝑪(𝑡)𝒙(𝑡),
(1)

where the linear operators 𝑨(𝑡), 𝑩(𝑡) and 𝑪(𝑡) are all periodic with period 𝑇 (i.e., 𝑨(𝑡) = 𝑨(𝑡 + 𝑇 )). The system (1) arises in fluid 
mechanics when the Navier-Stokes equations are linearized about a 𝑇 -periodic solution. In incompressible flow, the state 𝒙(𝑡) may 
be taken as the divergence-free velocity field at the cell faces (or cell centers) of a computational grid, the forcing term 𝑩(𝑡)𝒖(𝑡)
may be understood as a volumetric or boundary input and the output 𝒚(𝑡) could be some measured quantity (e.g., the velocity 
at some desired physical location in the flow). Usually, the operators 𝑩(𝑡) and 𝑪(𝑡) are time-invariant (e.g., if the control input 
and the measured output are located at some fixed physical coordinate), but here we include time dependence for the sake of 
generality.

In order to derive the frequency-domain representation of the reachability and observability Gramians associated with (1), it is 
notationally convenient to first diagonalize (1) via a Floquet change of coordinates [10]. In particular, by Floquet’s theorem, there 
exists a possibly complex 𝑇 -periodic change of coordinates 𝒙(𝑡) = 𝑽 (𝑡)𝒛(𝑡) such that

d
d𝑡
𝒛(𝑡) = 𝑱𝒛(𝑡) +𝑾 (𝑡)∗𝑩(𝑡)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑩̃(𝑡)

𝒖(𝑡)

𝒚(𝑡) =𝑪(𝑡)𝑽 (𝑡)
⏟⏞⏟⏞⏟

𝑪̃(𝑡)

𝒛(𝑡),
(2)

where 𝑾 (𝑡)∗𝑽 (𝑡) = 𝑰 for all 𝑡 and 𝑱 is a diagonal time-invariant matrix containing the Floquet exponents associated with (1). Here, 
𝑾 ∗ denotes the Hermitian transpose of 𝑾 . It is easy to verify that the periodic orbit is stable if and only if all the Floquet exponents 
lie in the left-half plane, and it is unstable otherwise.

2.2. Stable dynamics

In this subsection we assume that (1) is stable in the sense just described. The reachability and observability Gramians associated 
with the diagonalized dynamics (2) may be defined as

𝑮𝑅(𝑡0, 𝑡) =

𝑡

∫
𝑡0

𝑒𝑱 (𝑡−𝜏)𝑩̃(𝜏)𝑩̃(𝜏)∗𝑒𝑱
∗(𝑡−𝜏)d𝜏 (3)

𝑮𝑂(𝑡, 𝑡𝑓 ) =

𝑡𝑓

∫
𝑡

𝑒𝑱
∗(𝜏−𝑡)𝑪̃(𝜏)∗𝑪̃(𝜏)𝑒𝑱 (𝜏−𝑡)d𝜏. (4)

It can be shown that as 𝑡0 → −∞ and 𝑡𝑓 → +∞, the Gramians 𝑮𝑅(𝑡0, 𝑡) and 𝑮𝑂(𝑡, 𝑡𝑓 ) are periodic functions of 𝑡 with period 𝑇 . This is 
a well-known result that can be illustrated by considering the forward and adjoint differential Lyapunov equations below

d
d𝑡
𝑷 (𝑡) = 𝑱𝑷 (𝑡) + 𝑷 (𝑡)𝑱 ∗ + 𝑩̃(𝑡)𝑩̃(𝑡)∗ (5)

d ∗ ̃ ∗ ̃
3

−
d𝑡
𝑸(𝑡) = 𝑱 𝑸(𝑡) +𝑸(𝑡)𝑱 +𝑪(𝑡) 𝑪(𝑡). (6)
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It can be readily checked that the solution 𝑷 (𝑡) of (5) may be written as

𝑷 (𝑡) = 𝑒𝑱 (𝑡−𝑡0)𝑷 (𝑡0)𝑒𝑱
∗(𝑡−𝑡0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
initial cond. response

+ 𝑮𝑅(𝑡0, 𝑡)
⏟⏞⏟⏞⏟
forced resp.

, (7)

where 𝑷 (𝑡0) is the initial condition at time 𝑡 = 𝑡0. By Theorem 20 in Bolzern and Colaneri [4], equation (5) admits a unique positive-
definite (for all times) 𝑇 -periodic solution if (2) is stable and controllable. This solution may be understood as the long-time response 
of (5) to the external forcing 𝑩̃(𝑡)𝑩̃(𝑡)∗. In particular, if (1) is stable, it is clear that for 𝑡 ≫ 𝑡0 the initial condition response in (7) will 
go to zero and we will be left with the forced response 𝑷 (𝑡) =𝑮𝑅(𝑡0, 𝑡). A similar argument holds for the adjoint differential Lyapunov 
equation (6) for 𝑡 ≪ 𝑡𝑓 .

Now that we have established the relationship between the Gramians and the periodic solution of the corresponding differential 
Lyapunov equations, we can seek this solution in the frequency domain. In particular, since the solution is periodic with period 𝑇 , 
we can write

𝑷 (𝑡) =
∑
𝑘∈ℤ

𝑷 𝑘𝑒
𝑖𝑘𝜔𝑡, 𝑸(𝑡) =

∑
𝑘∈ℤ

𝑸𝑘𝑒
𝑖𝑘𝜔𝑡, 𝜔 = 2𝜋

𝑇
. (8)

Moreover, since 𝑩̃(𝑡) and 𝑪̃(𝑡) are also 𝑇 -periodic, they can be written in a Fourier series analogous to the ones in (8). Substitution 
into the corresponding Lyapunov equations leads, for a fixed integer 𝑘, to

(−𝑖𝑘𝜔𝑰 + 𝑱 )𝑷 𝑘 + 𝑷 𝑘𝑱
∗ +

∑
𝑙∈ℤ

𝑩̃𝑘+𝑙𝑩̃
∗
𝑙 = 0 (9)

(
𝑖𝑘𝜔𝑰 + 𝑱 ∗)𝑸𝑘 +𝑸𝑘𝑱 +

∑
𝑙∈ℤ

𝑪̃
∗
−𝑙−𝑘𝑪̃−𝑙 = 0. (10)

It is easy to verify (see, e.g., Godunov [11]) that the solution of the two algebraic Sylvester equations (9) and (10) is given by

𝑷 𝑘 =
1
2𝜋

∞

∫
−∞

(𝑖𝛾𝑰 − (−𝑖𝑘𝜔𝑰 + 𝑱 ))−1
∑
𝑙∈ℤ

𝑩̃𝑘+𝑙𝑩̃
∗
𝑙

(
−𝑖𝛾𝑰 − 𝑱 ∗)−1 d𝛾 (11)

𝑸𝑘 =
1
2𝜋

∞

∫
−∞

(
−𝑖𝛾𝑰 − (𝑖𝑘𝜔𝑰 + 𝑱 ∗)

)−1∑
𝑙∈ℤ

𝑪̃
∗
−𝑙−𝑘𝑪̃−𝑙 (𝑖𝛾𝑰 − 𝑱 )−1 d𝛾. (12)

It can be shown that the above integrals converge for all 𝑘 as long as no Floquet exponent (i.e., eigenvalue of 𝑱 ) lies on the imaginary 
axis. This implies that 𝑷 𝑘 and 𝑸𝑘 are well-defined also when one or more of the Floquet exponents lie in the open right-half plane 
(i.e., when the periodic dynamics are unstable). In the next subsection, we show that when the dynamics are unstable, the Gramians 
in (11) and (12) satisfy corresponding differential Lyapunov equations.

2.3. Unstable dynamics

In this subsection we assume that one or more of the eigenvalues of 𝑱 lie in the open right-half plane, so that the periodic 
dynamics are unstable. We henceforth let 𝑠 and 𝑢 denote the projections onto the stable and unstable eigenspaces of 𝑱 . Notice 
that since 𝑱 is a diagonal matrix, 𝑠 and 𝑢 are orthogonal projections (and, in fact, diagonal themselves). We can then state the 
following result.

Proposition 1. Suppose that no eigenvalue of 𝑱 lies on the imaginary axis. Then the Fourier coefficients 𝑷 𝑘 and 𝑸𝑘 defined in (11) and 
(12) satisfy the following Sylvester equations,

(−𝑖𝑘𝜔𝑰 + 𝑱 )𝑷 𝑘 + 𝑷 𝑘𝑱
∗ +𝑠

∑
𝑙∈ℤ

𝑩̃𝑘+𝑙𝑩̃
∗
𝑙 𝑠 −𝑢

∑
𝑙∈ℤ

𝑩̃𝑘+𝑙𝑩̃
∗
𝑙 𝑢 = 0 (13)

(
𝑖𝑘𝜔𝑰 + 𝑱 ∗)𝑸𝑘 +𝑸𝑘𝑱 +𝑠

∑
𝑙∈ℤ

𝑪̃
∗
−𝑙−𝑘𝑪̃−𝑙𝑠 −𝑢

∑
𝑙∈ℤ

𝑪̃
∗
−𝑙−𝑘𝑪̃−𝑙𝑢 = 0. (14)

Via inverse Fourier transform, it follows that the 𝑇 -periodic Gramians 𝑷 (𝑡) and 𝑸(𝑡) satisfy the differential Lyapunov equations below

d
d𝑡
𝑷 (𝑡) = 𝑱𝑷 (𝑡) + 𝑷 (𝑡)𝑱 ∗ +𝑠𝑩̃(𝑡)𝑩̃(𝑡)∗𝑠 −𝑢𝑩̃(𝑡)𝑩̃(𝑡)∗𝑢 (15)

− d
d𝑡
𝑸(𝑡) = 𝑱 ∗𝑸(𝑡) +𝑸(𝑡)𝑱 +𝑠𝑪̃(𝑡)∗𝑪̃(𝑡)𝑠 −𝑢𝑪̃(𝑡)∗𝑪̃(𝑡)𝑢. (16)

Proof. If all the Floquet exponents lie in the left-half plane, then 𝑢 = 𝟎 and 𝑠 = 𝑰 , and equations (13) and (14) agree with (9)
and (10), respectively. In the general case when 𝑢 ≠ 𝟎, the proof is analogous to the linear time-invariant case in Section 10.2 of 
4

Godunov [11]. The second part of the proposition follows immediately via inverse Fourier transform. □
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We have therefore established that the frequency-domain representation of the Gramians is well-defined for both stable and 
unstable dynamics. By contrast, the time-domain integral representation of the Gramians is well-defined only if the dynamics are 
stable; otherwise, the initial condition response in (7) would blow up for 𝑡 ≫ 𝑡0. In the next section we will take steps to make 
practical use of the results discussed in this section.

3. Towards an efficient algorithm to compute the Gramians

In this section we address two main issues. First and foremost, in balanced truncation we are not interested in explicitly computing 
the Fourier coefficients of the Gramians. Instead, we would like to evaluate the Gramians at a desired time 𝑡 ∈ [0, 𝑇 ). Conveniently, 
we show in the upcoming subsection that the Gramians at any time 𝑡 can be computed as an outer product of frequency-domain 
quantities. In the subsequent subsections, we address the second issue. Namely, we would like to compute the Gramians in the 
physical coordinates 𝒙(𝑡). While the diagonalized Floquet coordinates 𝒛(𝑡) have proven useful to understand the structure of the 
Gramians, they are not well-suited for computation. Specifically, for high-dimensional systems, it is generally infeasible to compute 
the diagonalizing Floquet transformation that maps 𝒙(𝑡) coordinates to 𝒛(𝑡) coordinates.

3.1. Gramians as an outer product

For the time being, we still work in Floquet coordinates 𝒛(𝑡), and we begin by showing that the Gramians 𝑷 (𝑡) and 𝑸(𝑡) may be 
computed at specific times 𝑡 as an outer product of frequency-domain factors. This is convenient from a computational standpoint, 
since integrals written as outer products lend themselves to straightforward numerical quadrature. The content of this subsection may 
therefore be understood as a first step towards developing an algorithm to compute the Gramians using frequency-domain variables.

Proposition 2. The 𝑇 -periodic reachability and observability Gramians 𝑷 (𝑡) and 𝑸(𝑡) can be written as

𝑷 (𝑡) = 1
2𝜋

∞

∫
−∞

𝒁(𝛾, 𝑡)𝒁(𝛾, 𝑡)∗ d𝛾, 𝑸(𝑡) = 1
2𝜋

∞

∫
−∞

𝒀 (𝛾, 𝑡)𝒀 (𝛾, 𝑡)∗ d𝛾, (17)

where

𝒁(𝛾, 𝑡) =
∑
𝑚∈ℤ

𝒁𝑚(𝛾)𝑒𝑖𝑚𝜔𝑡 =
∑
𝑚∈ℤ

(
(𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1 𝑩̃𝑚

)
𝑒𝑖𝑚𝜔𝑡 (18)

𝒀 (𝛾, 𝑡) =
∑
𝑚∈ℤ

𝒀 𝑚(𝛾)𝑒𝑖𝑚𝜔𝑡 =
∑
𝑚∈ℤ

((
−𝑖𝛾𝑰 − (𝑖𝑚𝜔𝑰 + 𝑱 ∗)

)−1
𝑪̃

∗
−𝑚

)
𝑒𝑖𝑚𝜔𝑡. (19)

Proof. The proof relies on the linearity of the Sylvester equations (13) and (14), so that it can be shown that the Fourier coefficients 
𝑷 𝑘 and 𝑸𝑘 of the Gramians can be written as linear combination of quantities that satisfy Sylvester equations similar to (13) and 
(14). Details can be found in Appendix A.1. □

We have therefore written the reachability Gramian 𝑷 (𝑡) as an outer product of a matrix-valued function 𝒁(𝛾, 𝑡) and its complex 
conjugate transpose. It is now easy to see that for any fixed time 𝑡 ∈ [0, 𝑇 ), one can estimate 𝑷 (𝑡) by numerically evaluating the 
integral in (17) via quadrature. The most computationally-intensive part of evaluating this integral is the computation of 𝒁𝑚(𝛾). 
Remarkably, however, this computation only needs to be performed once: one may compute and store 𝒁𝑚(𝛾) for every 𝑚 and 𝛾 , and 
then, for every desired time 𝑡 ∈ [0, 𝑇 ), we simply have to rotate 𝒁𝑚(𝛾) by 𝑒𝑖𝑚𝜔𝑡 and evaluate the integral.

3.2. Gramians in physical coordinates and connection with the harmonic resolvent

We are now ready to transition to physical coordinates 𝒙(𝑡), which are well-suited for computation. Given the Gramians 𝑷 (𝑡) and 
𝑸(𝑡) in the Floquet coordinates 𝒛(𝑡), one may verify that the Gramians in the original 𝒙(𝑡) coordinates are given by

𝑷 𝒙(𝑡) = 𝑽 (𝑡)𝑷 (𝑡)𝑽 (𝑡)∗, 𝑸𝒙(𝑡) =𝑾 (𝑡)𝑸(𝑡)𝑾 (𝑡)∗, (20)

where, as before, the 𝑇 -periodic matrices 𝑽 (𝑡) and 𝑾 (𝑡) define the Floquet change of coordinates in (2). Using the integral represen-
tation of 𝑷 (𝑡) and 𝑸(𝑡) in Proposition 2, it readily follows that

𝑷 𝒙(𝑡) =
1
2𝜋

∞

∫
−∞

𝒁𝒙(𝛾, 𝑡)𝒁𝒙(𝛾, 𝑡)∗ d𝛾, 𝑸𝒙(𝑡) =
1
2𝜋

∞

∫
−∞

𝒀 𝒙(𝛾, 𝑡)𝒀 𝒙(𝛾, 𝑡)∗ d𝛾, (21)

where

𝒁𝒙(𝛾, 𝑡) ∶= 𝑽 (𝑡)𝒁(𝛾, 𝑡) =
∑
𝑘∈ℤ

∑
𝑚∈ℤ

𝑽 𝑘−𝑚𝒁𝑚(𝛾)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑒𝑖𝑘𝜔𝑡, (22)
5

∶=𝒁𝒙,𝑘(𝛾)
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𝒀 𝒙(𝛾, 𝑡) ∶=𝑾 (𝑡)𝒀 (𝛾, 𝑡) =
∑
𝑘∈ℤ

∑
𝑚∈ℤ

𝑾 𝑘−𝑚𝒀 𝑚(𝛾)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝒀 𝒙,𝑘(𝛾)

𝑒𝑖𝑘𝜔𝑡. (23)

Using the definition of 𝒁𝑚(𝛾) and 𝒀 𝑚(𝛾) in Proposition 2, and the definition of 𝑩̃(𝑡) and 𝑪̃(𝑡) in (2), we may further expand 𝒁𝒙,𝑘(𝛾)
and 𝒀 𝒙,𝑘(𝛾) as follows

𝒁𝒙,𝑘(𝛾) =
∑
𝑚∈ℤ

𝑽 𝑘−𝑚 (𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1
∑
𝑗∈ℤ

𝑾 ∗
𝑗−𝑚𝑩𝑗 (24)

𝒀 𝒙,𝑘(𝛾) =
∑
𝑚∈ℤ

𝑾 𝑘−𝑚

(
−𝑖𝛾𝑰 − (𝑖𝑚𝜔𝑰 + 𝑱 ∗)

)−1 ∑
𝑗∈ℤ

𝑽 ∗
𝑗−𝑚𝑪

∗
−𝑗 . (25)

We now show that 𝒁𝒙,𝑘(𝛾) and 𝒀 𝒙,𝑘(𝛾) can be computed using the harmonic resolvent operator.
We begin with a short derivation of the harmonic resolvent operator. More details may be found in Padovan and Rowley [25]. 

Starting from (1) we write the state vector 𝒙(𝑡) as

𝒙(𝑡) = 𝑒𝑖𝛾𝑡
∑
𝑘∈ℤ

𝒙𝑘+𝛾 𝑒
𝑖𝑘𝜔𝑡, 𝛾 ∈ [0,𝜔∕2]. (26)

The signal above is known as an exponentially modulated periodic (EMP) signal, where the 𝑇 -periodic component inside the sum 
is modulated by the complex exponential 𝑒𝑖𝛾𝑡. It is well-known that EMPs are the appropriate class of signals for the analysis of 
time-periodic signals (see, e.g., Johnson [12] or Wereley [32]). For later reference, we observe that the signal 𝒙(𝑡) is a sum of Fourier 
modes with frequencies in the set Ω𝛾 = 𝛾 + 𝜔ℤ, where + denotes element-wise addition. Since all the linear operators in (1) are 
periodic with period 𝑇 , they may be written in a Fourier series analogous to (8). Then, writing 𝒖(𝑡) as an EMP, formula (1) may be 
written in the frequency domain as

𝑖(𝛾 + 𝑘𝜔)𝒙𝑘+𝛾 =
∑
𝑗∈ℤ

𝑨𝑘−𝑗𝒙𝑗+𝛾 +
∑
𝑗∈ℤ

𝑩𝑘−𝑗𝒖𝑗+𝛾

𝒚𝑘+𝛾 =
∑
𝑗∈ℤ

𝑪𝑘−𝑗𝒙𝑗+𝛾 .
(27)

Letting 𝒙̂𝛾 =
(
… ,𝒙−1+𝛾 ,𝒙𝛾 ,𝒙1+𝛾 ,…

)
denote an infinite-dimensional vector that contains all the coefficients of the EMP signal (26), we 

can define the infinite-dimensional linear operator 𝑻 as[
𝑻 𝒙̂𝛾

]
𝑘
= −𝑖𝑘𝜔𝒙𝑘+𝛾 +

∑
𝑗∈ℤ

𝑨𝑘−𝑗𝒙𝑗+𝛾 . (28)

Notice that 𝑻 is independent of 𝛾 , as it depends only on 𝜔 and on the Fourier coefficients of 𝑨(𝑡). From this definition and from 
formula (27), it follows that 𝒙𝑘+𝛾 is given by

𝒙𝑘+𝛾 =
∑
𝑗,𝑙∈ℤ

[
(𝑖𝛾𝑰 − 𝑻 )−1

]
𝑘,𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑯𝑘,𝑗 (𝛾)

𝑩𝑗−𝑙𝒖𝑙+𝛾 (29)

where the operator

𝑯(𝛾) = (𝑖𝛾𝑰 − 𝑻 )−1 (30)

is known as the harmonic resolvent operator evaluated at 𝛾 , and 𝑯𝑘,𝑗 (𝛾) is the block of 𝑯(𝛾) that maps inputs at frequency (𝛾 + 𝑗𝜔) ∈
Ω𝛾 to outputs at frequency (𝛾 + 𝑘𝜔) ∈Ω𝛾 . We can now state the desired result.

Proposition 3. The Fourier coefficients 𝒁𝒙,𝑘(𝛾) and 𝒀 𝒙,𝑘(𝛾) of the Gramian factors in formulas (24) and (25) may be written in terms of 
the harmonic resolvent 𝑯(𝛾) as follows

𝒁𝒙,𝑘(𝛾) =
∑
𝑗∈ℤ

𝑯𝑘,𝑗 (𝛾)𝑩𝑗 , 𝒀 𝒙,𝑘(𝛾) =
∑
𝑗∈ℤ

[𝑯(𝛾)∗]𝑘,𝑗 [𝑪∗]𝑗 . (31)

Proof. Using a Floquet change of coordinates, it can be shown that

𝑯𝑘,𝑗 (𝛾) =
∑
𝑚∈ℤ

𝑽 𝑘−𝑚 (𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1𝑾 ∗
𝑗−𝑚, (32)

and this concludes the proof. More details can be found in Appendix A.2. □

Formula (21) and Proposition 3 give us the necessary building blocks for a practical algorithm to compute the Gramians at desired 
times 𝑡 ∈ [0, 𝑇 ). In particular, the proposition shows us how to evaluate the integrals in (21) using the easily accessible harmonic 
6

resolvent operator.
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4. An algorithm to compute a factorization of the Gramians

In this section we highlight some of the features of the harmonic resolvent 𝑯(𝛾) that can be exploited to minimize computational 
cost. We then provide an explicit algorithm to compute the factors 𝒁𝒙(𝛾, 𝑡) and 𝒀 𝒙(𝛾, 𝑡).

4.1. Symmetries in the harmonic resolvent operator

We henceforth focus on the reachability Gramian 𝑷 (𝑡), since the computation of the observability Gramian 𝑸(𝑡) can be carried 
out in a similar fashion. For a given time 𝑡 ∈ [0, 𝑇 ), we can estimate the integral (21) as follows

𝑷 𝒙(𝑡) =
1
2𝜋

∞

∫
−∞

𝒁𝒙(𝛾, 𝑡)𝒁𝒙(𝛾, 𝑡)∗d𝛾 ≈
1
2𝜋

∑
𝑙∈ℕ

𝜉𝑙𝒁𝒙(𝛾𝑙, 𝑡)𝒁𝒙(𝛾𝑙, 𝑡)∗ (33)

where 𝜉𝑙 are quadrature coefficients, 𝛾𝑙 are discrete samples over the interval (−∞, ∞) and

𝒁𝒙(𝛾𝑙, 𝑡) =
∑
𝑘∈ℤ

𝒁𝒙,𝑘(𝛾𝑙)𝑒𝑖𝑘𝜔𝑡 =
∑
𝑘∈ℤ

(∑
𝑗∈ℤ

𝑯𝑘,𝑗 (𝛾𝑙)𝑩𝑗

)
𝑒𝑖𝑘𝜔𝑡 ∈ℂ𝑁×𝑀 (34)

by Proposition 3. In order to evaluate 𝒁𝒙(𝛾, 𝑡) at different times, we can simply compute and store the Fourier coefficients 𝒁𝒙,𝑘(𝛾)
and then rotate them using the complex exponential. This is advantageous, since computing 𝒁𝒙,𝑘(𝛾) is an expensive operation that 
could easily become computationally intractable if it had to be performed multiple times. In particular, computing matrix-matrix 
products of the form 𝑯𝑘,𝑗 (𝛾)𝑩𝑗 requires inverting the operator 𝑖𝛾𝑰 − 𝑻 (see formula (29)). The cost of solving these linear systems 
is dominated either by the computation of a complete factorization of 𝑖𝛾𝑰 − 𝑻 (e.g., LU decomposition), or by the computation of a 
preconditioner to assist the convergence of iterative solvers such as GMRES. This cost could be intractable if it had to be sustained 
for many values 𝛾 in the interval (−∞, ∞). Fortunately, we now show that the factorization (or computation of a preconditioner) 
needs to be performed for only a few values of 𝛾 in the interval [0, 𝜔∕2].

We begin with the following proposition, which states that 𝒁(𝛼, 𝑡) for any 𝛼 ∈ (−∞, ∞) may be computed using the harmonic 
resolvent 𝑯(𝛾) evaluated at 𝛾 ∈ (−𝜔∕2, 𝜔∕2].

Proposition 4. For any 𝛼 ∈ℝ, there exists an integer 𝑚 such that 𝛾 = 𝛼 −𝑚𝜔 ∈ (−𝜔∕2, 𝜔∕2] and

𝒁𝒙(𝛼, 𝑡) =
∑

𝑘,𝑗∈ℤ
𝑯𝑘,𝑗 (𝛾)𝑩𝑗−𝑚𝑒

𝑖(𝑘−𝑚)𝜔𝑡. (35)

Proof. Here we present an intuitive reason why this result holds. Recall that 𝑯(𝛼) maps inputs over the frequency set Ω𝛼 = 𝛼 + 𝜔ℤ
to outputs over the same set Ω𝛼 . Clearly, if 𝛼 = 𝛾 +𝑚𝜔 (for an integer 𝑚), then Ω𝛼 =Ω𝛾 = 𝛾 +𝜔ℤ. So, in order to compute 𝒁𝒙(𝛼, 𝑡), we 
can use the harmonic resolvent 𝑯(𝛾) evaluated at 𝛾 . The rigorous proof is in Appendix A.3. □

A second observation that we can make to reduce the computational cost stems from the real-valued nature of the dynamics in 
(1). In particular, it can be shown that for every 𝛾 , we have 𝒁(−𝛾, 𝑡) =𝒁(𝛾, 𝑡), where the overline denotes complex conjugation. Thus, 
the desired Gramian 𝑷 (𝑡) may be approximated as

𝑷 𝒙(𝑡) ≈
1
𝜋

∑
𝑙∈ℕ

𝜉𝑙
[
𝒁𝒙,r(𝛼𝑙, 𝑡)𝒁𝒙,r(𝛼𝑙, 𝑡)∗ +𝒁𝒙,i(𝛼𝑙, 𝑡)𝒁𝒙,i(𝛼𝑙, 𝑡)∗

]
𝑐𝑙, (36)

where 𝛼𝑙 ≥ 0, the subscripts “r” and “i” denote the real and imaginary parts of 𝒁𝒙(𝛼𝑙, 𝑡), and 𝑐𝑙 = 1 for 𝛼𝑙 > 0 and 1/2 for 𝛼𝑙 = 0. 
In other words, the integral can be approximated by considering only positive values 𝛼 ∈ [0, ∞). Putting together this observation 
and the result from Proposition 4, it is clear that we only need to factorize (or compute a preconditioner for) 𝑯 (𝛾) at values 
𝛾 ∈ [0, ∞) ∩ (−𝜔∕2, 𝜔∕2] = [0, 𝜔∕2].

4.2. Practical algorithm to compute the Gramian factors

As a first step for practical implementation, we need to truncate the Fourier representations of the periodic components of the 
dynamics. In particular, we truncate 𝑨(𝑡), 𝑩(𝑡), and 𝑪(𝑡) at frequency 𝑟𝑏, so that, for instance, we write

𝑨(𝑡) =
𝑟𝑏∑

𝑘=−𝑟𝑏

𝑨𝑘𝑒
𝑖𝑘𝜔𝑡. (37)

Similarly, we truncate the EMP signal in (26) as follows

𝒙(𝑡) = 𝑒𝑖𝛾𝑡
𝑟∑

𝑘=−𝑟

𝒙𝑘𝑒
𝑖𝑘𝜔𝑡, (38)
7

where we take 𝑟 ≥ 𝑟𝑏. It follows that 𝑻 is a square matrix with size (2𝑟 + 1)𝑁 and structure shown below,
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𝑻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ ⋱ ⋱ ⋱
⋱ 𝑹−2 𝑨−1 𝑨−2 ⋱
⋱ 𝑨1 𝑹−1 𝑨−1 𝑨−2 ⋱
⋱ 𝑨2 𝑨1 𝑹0 𝑨−1 𝑨−2 ⋱

⋱ 𝑨2 𝑨1 𝑹1 𝑨−1 ⋱
⋱ 𝑨2 𝑨1 𝑹2 ⋱

⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (39)

where 𝑹𝑘 =
(
−𝑖𝑘𝜔𝑰 +𝑨0

)
∈ ℂ𝑁×𝑁 . Recalling that 𝑖𝛾𝑰 − 𝑻 acts on vectors 𝒙̂𝛾 , we henceforth use the notation [𝒙̂𝛾 ]𝑘 to indicate the 

portion of the vector 𝒙̂𝛾 that gets multiplied by 𝑘th block-column of 𝑻 . (For clarity, the 𝑘th block-column is the one containing the 
block 𝑹𝑘.) We can now observe that for fixed 𝑚 and 𝛾 , the quantity 𝒁𝒙,𝑘(𝛼) ∶=

∑
𝑗 𝑯𝑘,𝑗 (𝛾)𝑩𝑗−𝑚 (with 𝛼 = 𝛾−𝑚𝜔, see Proposition 4) may 

be computed simultaneously for all 𝑘 ∈ {−𝑟, … , 𝑟}. For example, taking 𝛾 = 0 and 𝑚 = 1, the quantities 𝒁𝒙,𝑘(𝜔) =
∑

𝑗 𝑯𝑘,𝑗 (0)𝑩𝑗−1 satisfy

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋱

⋱

𝑨1

𝑹−1

⋱

𝑨1

𝑹0

𝑨−1

⋱

𝑹1

𝑨−1

⋱

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑖𝛾𝑰−𝑻=−𝑻

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⋮

𝒁𝒙,1(𝜔)

𝒁𝒙,0(𝜔)

𝒁𝒙,−1(𝜔)

⋮ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝒁̂
(𝑚)
𝒙,𝛾=𝒁̂

(1)
𝒙,0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⋮

𝑩0

𝑩−1

𝑩−2

⋮ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏟⏞⏞⏟

𝑩̂
(𝑚)=𝑩̂(1)

. (40)

Notice that the matrix 𝑩̂(𝑚)
is defined such that [𝑩̂(𝑚)]𝑘 = 𝑩𝑘−𝑚. In general then, given fixed 𝑚 and 𝛾 , we compute 𝒁𝒙,𝑘(𝛼) =∑

𝑗 𝑯𝑘,𝑗 (𝛾)𝑩𝑗−𝑚 as follows:

solve (𝑖𝛾𝑰 − 𝑻 )𝒁̂(𝑚)
𝒙,𝛾 = 𝑩̂

(𝑚)
, extract 𝒁𝒙,𝑘(𝛼) ∶= [𝒁̂(𝑚)

𝒙,𝛾 ]𝑘. (41)

Algorithm 1 Compute factor 𝒁̃𝒙(𝑡𝑛) for 𝑡𝑛 ∈ [0, 𝑇 ).
Input: Matrix 𝑻 and discrete points 𝛾𝑙 ∈ [0, 𝜔∕2] with 𝑙 ∈ {1, 2, … , 𝐿}
Output: Matrix 𝒁̃𝒙(𝑡) at time 𝑡 ∈ [0, 𝑇 )
Part I: Compute 𝒁𝒙,𝑘(𝛾𝑙 +𝑚𝜔) ∶=∑

𝑗 𝑯𝑘,𝑗 (𝛾)𝑩𝑗−𝑚 for all 𝛾𝑙 and 𝑚
1: Initialize matrix 𝑿 ∈ℂ(2𝑟+1)𝑁×((𝐿−2)(2𝑟+1)+2(𝑟+1))𝑀

2: for 𝑙 ∈ {1, 2, … , 𝐿} do

3: Compute factorization (or preconditioner) of 𝑖𝛾𝑙𝑰 − 𝑻

4: if 𝛾𝑙 ≠ 0 and 𝛾𝑙 ≠ 𝜔∕2 then

5: Range = {−𝑟, … , 0, … , 𝑟}
6: else

7: Range = {0, … , 𝑟}
8: for 𝑚 ∈ Range do

9: Solve (𝑖𝛾𝑙𝑰 − 𝑻 )𝒁̂ (𝑚)
𝒙,𝛾𝑙

= 𝑩̂
(𝑚)

, where [𝒁̂(𝑚)
𝒙,𝛾𝑙

]𝑘 =𝒁𝒙,𝑘(𝛾𝑙 +𝑚𝜔)

10: Store 𝒁̂ (𝑚)
𝒙,𝛾𝑙

in 𝑿
11: Return: Matrix 𝑿
Part II: Compute 𝒁̃𝒙(𝑡𝑛) at some desired time 𝑡𝑛 ∈ [0, 𝑇 )

12: Initialize 𝒁̃𝒙(𝑡𝑛) ∈ℝ𝑁×2((𝐿−2)(2𝑟+1)+2(𝑟+1))𝑀

13: for 𝑙 ∈ {1, 2, … , 𝐿} do

14: if 𝛾𝑙 ≠ 0 and 𝛾𝑙 ≠ 𝜔∕2 then

15: Range = {−𝑟, … , 0, … , 𝑟}
16: else

17: Range = {0, … , 𝑟}
18: if 𝛾𝑙 = 0 then

19: 𝑐𝑙 = 1∕2
20: else

21: 𝑐𝑙 = 1
22: for 𝑚 ∈ Range do

23: Extract the component 𝒁̂(𝑚)
𝛾𝑙

from 𝑿
24: Compute 𝒁 (𝑚)

𝒙,𝛾𝑙
(𝑡𝑛) ←

∑
𝑘∈ℤ𝑋

[𝒁̂ (𝑚)
𝛾𝑙

]𝑘𝑒𝑖(𝑘−𝑚)𝜔𝑡𝑛

25: Store 
√

𝑐𝑙 𝜉𝑙
𝜋

Real(𝒁 (𝑚)
𝒙,𝛾𝑙

(𝑡𝑛)) and 
√

𝑐𝑙 𝜉𝑙
𝜋

Imag(𝒁 (𝑚)
𝒙,𝛾𝑙

(𝑡𝑛)) into 𝒁̃𝒙(𝑡𝑛)

26: Return: Factor 𝒁̃𝒙(𝑡𝑛)

We are now ready to present an algorithm to compute the Gramian factors. In particular, Algorithm 1 will output a matrix 𝒁̃𝒙(𝑡)
8

with columns
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1√
𝜋

{√
𝑐𝑙𝜉𝑙𝒁𝒙,r(𝛼𝑙, 𝑡),

√
𝑐𝑙𝜉𝑙𝒁𝒙,i(𝛼𝑙, 𝑡)

}
, 𝛼𝑙 ∈ [0,∞), (42)

so that, per equation (36), we have 𝑷 𝒙(𝑡) ≈ 𝒁̃𝒙(𝑡)𝒁̃𝒙(𝑡)∗.
In the first part of the algorithm, we compute the frequency-domain factors and store them. This is the most computationally 

intensive part of the algorithm, as we need to solve several linear systems of size (2𝑟 + 1)𝑁 . In the second part, we simply rotate 
the previously computed factors using the complex exponential, and evaluate the factor 𝒁𝒙(𝑡) at the desired time 𝑡 ∈ [0, 𝑇 ). This 
part of the algorithm is virtually free of cost compared to the first part. We close this section by observing that the factors 𝒀 𝒙(𝑡)
may be computed using Algorithm 1 by replacing 𝑖𝛾𝑙𝑰 − 𝑻 with its complex conjugate transpose and by replacing 𝑩 with 𝑪∗. The 
observability Gramian at any time 𝑡 may then be evaluated via quadrature as 𝑸𝒙(𝑡) ≈ 𝒀 𝒙(𝑡)𝒀 𝒙(𝑡)∗.

5. Computational considerations

In this section we provide guidelines that may be helpful in determining whether the Gramians should be computed in the 
frequency domain or in the time domain, for a particular application. We use a three-dimensional toy model to demonstrate the use 
and cost of frequency-domain and time-domain algorithms to compute the Gramians.

5.1. Heuristic guidelines

Here, we consider the reachability Gramian 𝑷 𝒙(𝑡), since analogous logic applies to the observability Gramian 𝑸𝒙(𝑡). In order to 
appreciate the benefits and drawbacks of using frequential Gramians, it is instructive to understand how the Gramians would be 
computed in the time domain. For a stable system (1), we recall that

𝑷 𝒙(𝑡) = 𝑷 𝒙(𝑡+ 𝑇 ) ∶= lim
𝑛→∞

𝑮𝑅,𝒙(0, 𝑛𝑇 + 𝑡), (43)

where 𝑛 is a positive integer and

𝑮𝑅,𝒙(0, 𝑠) =

𝑠

∫
0

𝑭 (𝑠, 𝜏)𝑩(𝜏)𝑩(𝜏)∗𝑭 (𝑠, 𝜏)∗d𝜏. (44)

Here, 𝑭 (𝑠, 𝜏) denotes the fundamental solution of (1); i.e., d∕d𝑠(𝑭 (𝑠, 𝜏)) =𝑨(𝑠)𝑭 (𝑠, 𝜏) with 𝑭 (𝜏, 𝜏) = 𝑰 . For a fixed 𝜏 ≤ 𝑠, the quantity

𝒙𝜏 (𝑠) ∶= 𝑭 (𝑠, 𝜏)𝑩(𝜏) ∈ℝ𝑁×𝑀 (45)

is the time-𝜏 impulse response of (1), which can be computed numerically by solving

d
d𝑡
𝒙(𝑗)𝜏 (𝑡) =𝑨(𝑡)𝒙(𝑗)𝜏 (𝑡), 𝒙(𝑗)𝜏 (𝜏) =𝑩𝑗 (𝜏), 𝑗 ∈ {1,2,… ,𝑀}, (46)

from 𝑡 = 𝜏 to 𝑡 = 𝑠. Formula (43) naturally lends itself to numerical quadrature, so that 𝑷𝒙(𝑡) may be approximated as 𝑷𝒙(𝑡) ≈
lim𝑛→∞𝑿(𝑛𝑇 + 𝑡)𝑿(𝑛𝑇 + 𝑡)∗, where 𝑿(𝑠) is given below

𝑿(𝑠) =
[√

𝜉1𝒙𝜏1
(𝑠),

√
𝜉2𝒙𝜏2

(𝑠),… ,
√

𝜉𝑆𝒙𝜏𝑆
(𝑠)

]
∈ℂ𝑁×𝑀𝑆, 𝜏𝑙 ∈ [0, 𝑠], (47)

and 𝜉𝑙 are quadrature coefficients. By contrast, we recall from part II of Algorithm 1 that the Gramian 𝑷 𝒙(𝑡) may be approximated in 
the frequency domain as 𝑷 𝒙(𝑡) ≈ 𝒁̃𝒙(𝑡)𝒁̃𝒙(𝑡)∗, where 𝒁̃𝒙(𝑡) has size 𝑁 × 2𝑀𝐼 and 𝐼 is equal to the number of discrete 𝛼𝑙 in equation 
(36). The factor of 2 comes from the fact that the real and imaginary parts of 𝒁𝒙(𝛼, 𝑡) in equation (36) are stored separately.

With this information at hand, we see that evaluating 𝒁̃𝒙(𝑡) at some fixed time 𝑡 requires solving 𝑀𝐼 algebraic systems of 
equations. By contrast, evaluating 𝑿(𝑠) at some fixed time 𝑠 = 𝑛𝑇 + 𝑡 requires solving 𝑀𝑆 initial-value problems (46) in the time 
domain. The question we ask is, when is it convenient to compute 𝑷 𝒙(𝑡) in the frequency domain, and when is it convenient to 
compute it in the time domain? Although it is virtually impossible to provide a precise operations count for the two methods, we 
can still provide guidelines that the user may find useful. For simplicity, let us assume that 𝑂(𝐼) =𝑂(𝑆). This can usually be taken 
to be the case in practice. The fundamental difference between the two methods is that one requires time stepping, while the other 
does not. Thus, although the number of required impulse responses 𝑀𝑆 and required linear solves 𝑀𝐼 is comparable, the time-
domain method is fundamentally limited by (i) numerical stability constraints associated with time stepping (i.e., the time step in 
(46) might have to be small, depending on the specific properties of the time-stepper) and (ii) physical transients that time-steppers 
are forced to follow. In particular, if the dynamics exhibit slowly-decaying transients, then 𝑠 = 𝑛𝑇 + 𝑡 must be taken very large (see 
formula (43)), and the cost of computing the Gramian using the time domain increases significantly. By contrast, computing the 
Gramian factors in the frequency domain requires solving algebraic systems of equations that do not suffer from the drawbacks of 
time-stepping methods. Another often overlooked aspect of time steppers is that they are inherently sequential in time, so that any 
type of computational parallelism can only be spatial (e.g., distributing the degrees of freedom of (1) across multiple processors). 
On the other hand, algebraic systems of equations lend themselves to massive space-time parallelism, so that a higher number of 
processors can be deployed to accelerate the computations in the frequency domain.

Unfortunately, the benefits of the frequency domain are not free of cost. The main drawback is that the 𝑁 -dimensional time-
9

periodic dynamics are “lifted” into a higher-dimensional space of size 𝑁(2𝑟 + 1). Therefore, solving the desired algebraic equations 
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requires inverting the operator 𝑖𝛾𝑰 − 𝑻 . The main issue therefore lies in computing a factorization of 𝑖𝛾 − 𝑻 , or a suitable precondi-
tioner (although, fortunately, this only has to be done for a few values 𝛾 ∈ [0, 𝜔∕2), as explained in the previous section). Depending 
on the nature and size of the underlying problem, it may be possible to compute an LU decomposition of 𝑖𝛾𝑰 − 𝑻 using parallelized 
libraries such as MUMPS [2], or alternatively, one may use out-of-the-box preconditioners. Given the structure of 𝑻 , we recommend 
the use of Block-Jacobi as a starting point. However, there may be problems whose size is such that an LU factorization cannot be 
performed, and whose structure is such that a Block-Jacobi preconditioner does not work particularly well. Identifying an efficient 
preconditioner tailored to the quasi block-Toeplitz structure of the matrix 𝑖𝛾𝑰 −𝑻 remains an open question and the subject of future 
work.

As far as storage is concerned, the time-domain approach is more efficient. Although both approaches yield Gramian factors of 
comparable size, part I of Algorithm 1 shows that the matrix 𝑿 of size 𝑁(2𝑟 +1) ×𝑀𝐼 needs to be held in memory. Thus, the memory 
burden of the frequency-domain approach is 𝑂(𝑟) higher than the time-domain method.

Given this discussion, it becomes clear that the choice of algorithm is heavily dependent on the nature of the underlying dynamics. 
In general, we recommend the use of the frequency domain for systems with state 𝑁 of moderate size 𝑂(105) or less, so that the 
size of 𝑻 remains below 𝑂(107) and an LU decomposition of 𝑖𝛾𝑰 − 𝑻 can be computed. If the size of the system is much higher than 
𝑂(105), but the structure of 𝑻 is predominantly diagonal, then the frequency domain remains a feasible option, with out-of-the-box 
preconditioners such as Block-Jacobi assisting the convergence of Krylov solvers. Systems where the structure of 𝑻 is dominantly 
diagonal (see, e.g., (39)) are systems where ‖𝑨𝑘>0‖ ≪ ‖𝑨0‖, where 𝑨𝑘 is the 𝑘th Fourier coefficient of the operator 𝑨(𝑡). We also 
recommend the use of the frequency domain if the underlying system exhibits slowly-decaying transients, since, as explained, these 
will inevitably drive up the cost of computing the Gramians in the time domain. Finally, the frequency domain is also well-suited 
for unstable systems, while the time-domain procedure described herein cannot be applied since the limit in (43) does not exist. 
Theoretically, this issue could be solved via a splitting of the stable and unstable Floquet eigenspaces, but this comes at the price of 
higher computational cost.

5.2. Application to a three-dimensional toy model

In this section we implement the frequency-domain and time-domain algorithms discussed so far to compute the Gramians for a 
simple system of three differential equations. All the scripts used to generate these results are publicly available in the GitHub repos-
itory https://github .com /albertopadovan /Frequential _Gramians. The system we consider is governed by the following differential 
equations

𝑥̇ = 𝜇𝑥− 𝑦− 𝛼𝑥𝑧− 𝛽𝑥𝑦+ 0.1𝑢 (48)

𝑦̇ = 𝑥+ 𝜇𝑦− 𝛼𝑦𝑧+ 𝛽𝑥2 + 0.1𝑢 (49)

𝑧̇ = −𝛼𝑧+ 𝛼
(
𝑥2 + 𝑦2

)
(50)

where 𝑥̇ = d𝑥∕d𝑡, 𝜇 = 𝛼 = 𝛽 = 1∕5, 𝑢(𝑡) is an external input chosen as 𝑢(𝑡) = sin(2𝜔𝑡) and 𝜔 =
√
1 − 𝛽2𝜇∕𝛼 is the natural frequency of 

the system. A detailed discussion of the dynamics of this system is presented in section 3 in Padovan et al. [24]. The external input 
𝑢 is chosen to be non zero to set the phase of the limit cycle and remove the neutrally stable direction of phase shift that would 
naturally appear otherwise. The limit cycle induced by the external forcing 𝑢 is shown in Fig. 1a and colored according to ‖d𝒙∕d𝑡‖, 
where 𝒙 = (𝑥, 𝑦, 𝑧) is the state vector. Upon linearization of the dynamics (48)–(50) about the periodic limit cycle shown in Fig. 1a, 
we obtain a linear time-periodic system of the form

d
d𝑡
𝒙′ =𝑨(𝑡)𝒙′ +𝑩𝑢′, (51)

where 𝒙′ =
(
𝑥′, 𝑦′, 𝑧′

)
denotes the perturbed state about the limit cycle and 𝑩 = (0.1,0.1,0) is the input matrix of size 3 × 1. A 

representative initial-condition response of the linearized dynamics is shown in Fig. 1b with the intent of demonstrating that this 
system exhibits slowly-decaying transients: perturbations decay to zero after 40 to 50 fundamental periods 𝑇 = 2𝜋∕𝜔. We shall see 
momentarily that this slow decay severely increases the cost of computing the Gramians in the time domain.

We now compute the reachability Gramian 𝑷 𝒙 at time 𝑡 = 0 using three different methods. The first method computes the Gramian 
using the time-domain approach described in section 5.1. The second method computes the Gramian using the frequency-domain 
factors, but without exploiting the symmetries in the harmonic resolvent operator discussed in section 4.1. That is, we factorize/invert 
the matrix 𝑖𝛾𝑙𝑰 − 𝑻 for every 𝛾𝑙 ∈ [0,∞). Finally, the third method uses Algorithm 1. That is, we leverage the symmetries in the 
harmonic resolvent operator and we factorize 𝑖𝛾𝑙𝑰 − 𝑻 only for values 𝛾𝑙 ∈

[
0,𝜔∕2). Throughout this section, we take 𝑟𝑏 = 𝑟 = 10 in 

equations (37) and (38), so that 𝑻 has rows (and column) size 3 × (2𝑟 + 1) = 63. When computing the Gramian in the time domain, 
we approximate the integral (44) by taking 𝑠 = 40 𝑇 , and we discretize the integration domain using 600 points (i.e., 15 points per 
period 𝑇 ). Since we have only one input (i.e., 𝑢′ is a scalar), it follows that we have to compute a total of 600 impulse responses 
from times 𝜏𝑖 ∈ [0, 40 𝑇 ] to 𝑠 = 40 𝑇 . When computing the Gramian using the frequential factors, we discretize the integration domain 
[0,∞) with 610 equally-spaced points with Δ𝛾 = (𝜔∕2)∕30, regardless of whether we leverage the harmonic resolvent symmetries 
or not. Once again, since we only have one input, we have to solve 610 linear systems in the frequency domain. The numerical 
experiments reported herein were performed on a MacBook Pro with M2 chips running Python 3.9.13. Time-stepping was performed 
10

using solve_ivp from the scipy.integrate library, while matrix factorizations were performed using scipy.linalg.

https://github.com/albertopadovan/Frequential_Gramians
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Fig. 1. (a) Limit-cycle solution of equations (48)–(50) in response to 𝑢 = sin(2𝜔𝑡) (the colorbar shows the 2-norm of the time-derivative of the solution) and, (b) initial 
condition response of the linearized dynamics (51) with initial condition 𝒙′(0) = (0.1,0.1,0.0). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Table 1

Comparison of the three approaches used to compute the reachability Gramian at time 
𝑡 = 0. The percent error is defined in formula (52).

Wall-clock time [s] Percent error

Time domain 30.50 7.5 × 10−3

Frequency domain (no symmetries) 0.060 2.0 × 10−3

Frequency domain (Algorithm 1) 0.019 2.0 × 10−3

In Table 1 we report the execution time of the three approaches, along with the percent error computed against a ground truth 
reference. The ground truth reference 𝑷𝒙,ref(0) was computed by harmonic-balancing the differential Lyapunov equation (5) in 
physical coordinates (thus solving a frequency-domain algebraic Lyapunov equation), and the percent error is defined as

𝑒 = 100 ×
Trace

(
(𝑷 𝒙 − 𝑷 𝒙,ref)𝑇 (𝑷 𝒙 − 𝑷 𝒙,ref)

)
Trace

(
𝑷 𝑇

𝒙,ref𝑷 𝒙,ref

) , (52)

where 𝑷 𝒙 is the Gramian (at time 𝑡 = 0) computed by any one of the three methods that we discuss. As we can see in the table, the 
time-domain approach is by far the most computationally intensive. This is likely due to the fact that the system at hand exhibits 
slowly decaying transients that force us to run very long impulse responses. By contrast, the “naive” frequency-domain approach 
is roughly 500 times faster, while Algorithm 1 achieves a speed-up of an additional factor of 3. The additional computational 
gain obtained using Algorithm 1 is due to the fact that we compute fewer matrix factorizations. In fact, we perform 10 times 
fewer factorizations that in the naive frequency-domain implementation. For larger problems, where the matrix factorization is 
the computational bottleneck, we can expect the additional speed-up achieved by Algorithm 1 to scale (approximately) linearly 
with the decrease in matrix factorizations. Finally, we also observe that the error associated with the frequency-domain approaches 
is approximately 3 to 4 times lower than the error given by the time-domain approach. We expect the error of the time-domain 
approach to decrease as we increase the integration final time 𝑠 in (44), and as we refine the sampling of the integration interval 𝜏 .

6. Continuous-time balanced truncation

In this section we describe the continuous-time balanced truncation approach for model reduction. Given a dynamical system of 
the form (1), balanced truncation seeks a continuously differentiable periodic change of coordinates 𝒙(𝑡) =𝚽𝚽𝚽(𝑡)𝒒(𝑡), with 𝚿𝚿𝚿(𝑡)∗𝚽𝚽𝚽(𝑡) =
𝑰 ∈ℝ𝑁×𝑁 , such that the 𝒒(𝑡)-coordinate Gramians

𝑷 𝒒(𝑡) =𝚿𝚿𝚿(𝑡)∗𝑷 𝒙(𝑡)𝚿𝚿𝚿(𝑡), 𝑸𝒒(𝑡) =𝚽𝚽𝚽(𝑡)∗𝑸𝒙(𝑡)𝚽𝚽𝚽(𝑡) (53)

are equal and diagonal. In other words,

𝑷 𝒒(𝑡) =𝑸𝒒(𝑡) =𝚺𝚺𝚺(𝑡) = diag(𝜎1(𝑡), 𝜎2(𝑡),… , 𝜎𝑁 (𝑡)). (54)

We begin by illustrating the balancing scheme, and then we address some of the subtleties associated with the time-varying nature 
of the problem. Given a factorization of the Gramians, e.g.,

𝑷 𝒙(𝑡) = 𝒁̃𝒙(𝑡)𝒁̃𝒙(𝑡)∗, 𝑸𝒙(𝑡) = 𝒀 𝒙(𝑡)𝒀 𝒙(𝑡)∗, (55)

where the factors can be chosen to be 𝑇 -periodic (see, e.g., the factors described in the previous sections), the first step in computing 
11

the balancing change of coordinates is to compute the singular value decomposition (SVD)
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𝒀 𝒙(𝑡)∗𝒁̃𝒙(𝑡) =𝑼 (𝑡)𝚺𝚺𝚺(𝑡)𝑽 (𝑡)∗ (56)

at all times 𝑡 ∈ [0, 𝑇 ). Then, so long as 𝚺𝚺𝚺(𝑡)−1 exists for all 𝑡, the desired matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡) are given by

𝚽𝚽𝚽(𝑡) = 𝒁̃𝒙(𝑡)𝑽 (𝑡)𝚺𝚺𝚺(𝑡)−1∕2, 𝚿𝚿𝚿(𝑡) = 𝒀 𝒙(𝑡)𝑼 (𝑡)𝚺𝚺𝚺(𝑡)−1∕2, (57)

where it can be easily checked that 𝚿𝚿𝚿(𝑡)∗𝚽𝚽𝚽(𝑡) = 𝑰 for all times.
The first subtlety stems from the fact that we require the matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡) to be continuously differentiable. As a conse-

quence, while in linear time-invariant systems the (time-invariant) Hankel singular values 𝜎𝑖 may be arranged in descending order, in 
the time-varying setting it may not be possible to enforce this arrangement for all times. In fact, the differentiability requirement can 
cause the time-periodic 𝜎𝑖(𝑡) to cross each other for different 𝑖. This seemingly innocuous difference may lead to ambiguities when try-
ing to determine a global (i.e., for all times) truncation rank 𝑟 ≪ 𝑁 to assemble a reduced-order model. In fact, it is theoretically possi-
ble that the smallest singular value at time 𝑡 = 0 becomes the largest at a later time. Fortunately, while the singular values can certainly 
coalesce in practice, the crossing is usually localized, so that the aforementioned pathological behavior is uncommon. For the sake of 
completeness, we observe that this issue can be addressed by allowing for the reduced-order system to have time-varying dimensions. 
While this is a natural thing to do in discrete-time setting [31], the possibility of time-varying state dimensions in continuous-time 
has been explored by Sandberg and Rantzer [28] at the price of introducing discontinuities in the measured output 𝒚(𝑡).

Another subtlety that arises in continuous-time balanced truncation is the fact that even though the full-order model (1) is periodic 
with period 𝑇 , the balanced model may have period 𝑚𝑇 for some integer 𝑚 ≥ 1. This is a direct consequence of the fact that smooth 
decompositions of 𝑇 -periodic matrices (in this case 𝒀 𝒙(𝑡)∗𝒁̃𝒙(𝑡)) may yield factors (see equation (56)) whose period is larger than 𝑇 . 
A thorough discussion on smoothness and periodicity of some matrix decompositions may be found in Chern and Dieci [5]. These two 
difficulties are inherently tied to the balancing procedure and they cannot be avoided. Fortunately, however, they can be addressed 
in a straightforward fashion within our framework. An algorithm is provided below.

Algorithm 2 Compute matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡).
Input: Matrix 𝑻 , discrete samples 𝛾𝑙 ∈ [0, 𝜔∕2], reduced-order model rank 𝑟, expected period 𝑚𝑇 of 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡), discrete time samples 𝑡𝑛 ∈ [0, 𝑚𝑇 )
Output: Matrices 𝚽𝚽𝚽(𝑡𝑛), 𝚿𝚿𝚿(𝑡𝑛) ∈ℝ𝑁×𝑟 at time instances 𝑡𝑛 ∈ [0, 𝑚𝑇 )
1: Compute and store matrix 𝑿 using part I of Algorithm 1
2: for 𝑡𝑛 ∈ [0, 𝑚𝑇 ) do

3: Compute 𝒁̃𝒙(𝑡𝑛) and 𝒀 𝒙(𝑡𝑛) using part II of Algorithm 1
4: Compute the SVD of 𝒀 𝒙(𝑡𝑛)∗𝒁̃𝒙(𝑡𝑛) =𝑼 (𝑡𝑛)𝚺𝚺𝚺(𝑡𝑛)𝑽 (𝑡𝑛)∗ as in (56)
5: Truncate the SVD factors at rank 𝑟
6: if 𝑡𝑛 > 0 then

7: Order the SVD factors so that they are continuously differentiable
with respect to time 𝑡: permute the columns of the factors so that
𝑼 (𝑡𝑛−1)𝑇𝑼 (𝑡𝑛) ≈ 𝑰 .

8: Compute 𝚽𝚽𝚽(𝑡𝑛) and 𝚿𝚿𝚿(𝑡𝑛) as in (57)

The “if statement” in the algorithm may be understood as a mode-tracking step. Given a sufficiently finely sampled time interval, 
it is reasonable to expect the SVD factors 𝑼 (𝑡𝑛) and 𝑽 (𝑡𝑛) to be well-aligned with the factors 𝑼 (𝑡𝑛−1) and 𝑽 (𝑡𝑛−1). Comparing the mode 
alignment at neighboring time instances allows us to detect any crossing of the singular values and to keep the factors continuously 
differentiable across the entire interval [0, 𝑚𝑇 ). For completeness, it is worth observing that different mode-tracking logic can be 
implemented. For example, this could be done using an approach similar to the dynamical low rank approximation described in 
Koch and Lubich [15] and in Lubich and Oseledets [18]. In Algorithm 2, the time interval [0, 𝑚𝑇 ) itself is given as an input to 
the algorithm. Unfortunately, there is no practical a-priori way of determining what the period of the factors will be [5], so the 
appropriate value 𝑚𝑇 will be problem dependent. Fortunately, it is inexpensive to try different values of 𝑚 (or even to choose 𝑚
sufficiently large and then identify the minimal period), since the computationally-intensive part of Algorithm 2 consists in computing 
the matrix 𝑿 via part I of Algorithm 1.

Given the matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡) of period 𝑚𝑇 , the desired 𝑚𝑇 -periodic 𝑟-dimensional reduced model is obtained by substituting 
𝒙(𝑡) =𝚽𝚽𝚽(𝑡)𝒒(𝑡) into (1) and left-multiplying by 𝚿𝚿𝚿(𝑡)∗,

d
d𝑡
𝒒(𝑡) =𝚿𝚿𝚿(𝑡)∗

(
𝑨(𝑡)𝚽𝚽𝚽(𝑡) − d

d𝑡
𝚽𝚽𝚽(𝑡)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑨𝑟(𝑡)

𝒒(𝑡) +𝚿𝚿𝚿(𝑡)∗𝑩(𝑡)
⏟⏞⏞⏟⏞⏞⏟

𝑩𝑟(𝑡)

𝒖(𝑡)

𝒚(𝑡) =𝑪(𝑡)𝚽𝚽𝚽(𝑡)
⏟⏞⏟⏞⏟

𝑪𝑟(𝑡)

𝒒(𝑡).
(58)

This is a 𝑚𝑇 -periodic linear system whose size 𝑟 ≪ 𝑁 is suitable for control and estimation.

7. Application to an axisymmetric jet

In this section we demonstrate the balancing Algorithms 1 and 2 on a periodically-forced incompressible axisymmetric jet at two 
12

different Reynolds numbers, 𝑅𝑒 = 1250 and 𝑅𝑒 = 1500. At 𝑅𝑒 = 1250, the flow admits a stable time-periodic solution characterized 
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Fig. 2. Vorticity snapshots from the 𝑇 -periodic solution at time 𝑡 = 0 for (a) Reynolds number 𝑅𝑒 = 1250 and (b) Reynolds number 𝑅𝑒 = 1500.

by unpaired vortex rings. However, this solution is extremely sensitive to subharmonic perturbations, so that any small perturbation 
will cause neighboring vortex rings to pair and merge. Here, we compute a reduced-order model and we design a disturbance-
rejection feedback controller to delay and mitigate the pairing phenomenon. At 𝑅𝑒 = 1500, the flow admits an unstable time-periodic 
solution, also characterized by unpaired vortex rings. Given the unstable nature of the solution, however, the flow will naturally 
depart from the unstable unpaired configuration and it will settle onto a different periodic orbit characterized by paired rings. In this 
case, we compute a reduced-order model and we use it to design a stabilizing feedback controller. These two cases demonstrate the 
effectiveness of Algorithms 1 and 2 at delivering a reduced-order model both when the underlying dynamics are stable and when 
they are unstable.

7.1. Flow description and numerical setup

We begin by providing a brief description of the governing equations. Throughout, velocities are non-dimensionalized by the 
jet centerline velocity 𝑈0 and lengths are non-dimensionalized by the jet diameter 𝐷0, so that we may define the Reynolds number 
𝑅𝑒 = 𝑈0𝐷0∕𝜈, where 𝜈 is the kinematic viscosity of the fluid. The flow is governed by the incompressible Navier-Stokes equation 
along with the continuity equation over the spatial domain  = {(𝑧, 𝜉)| 𝑧 ∈ [0, 𝐿𝑧], 𝜉 ∈ [0, 𝐿𝜉 ]}, with 𝐿𝑧 = 15 and 𝐿𝜉 = 4. In particular, 
given the (dimensionless) axial velocity 𝑢, the radial velocity 𝑣 and the pressure 𝑝, we have

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝜉
= − 𝜕𝑝

𝜕𝑧
+ 1

𝑅𝑒

(
1
𝜉

𝜕

𝜕𝜉

(
𝜉
𝜕𝑢

𝜕𝜉

)
+ 𝜕2𝑢

𝜕𝑧2

)
(59a)

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝜉
= − 𝜕𝑝

𝜕𝜉
+ 1

𝑅𝑒

(
1
𝜉

𝜕

𝜕𝜉

(
𝜉
𝜕𝑣

𝜕𝜉

)
− 𝑣

𝜉2
+ 𝜕2𝑣

𝜕𝑧2

)
(59b)

𝜕𝑢

𝜕𝑧
+ 1

𝜉

𝜕 (𝜉𝑣)
𝜕𝜉

= 0. (59c)

At the centerline 𝜉 = 0 we impose axisymmetric boundary conditions, at the outflow and at the top boundary we impose a zero 
normal gradient boundary condition on both velocity components, and at the inflow we consider the axial velocity profile

𝑢(𝜉, 𝑧 = 0, 𝑡) = 𝑔(𝜉) (1 +𝐴 cos𝜔𝑡) , (60)

where 𝐴 is the non-dimensional forcing amplitude, 𝜔 is the forcing frequency, and

𝑔(𝜉) = 1
2

{
1 − tanh

[
1
4𝜃0

(
𝜉 − 1

4𝜉

)]}
. (61)

The parameter 𝜃0 may be understood as a non-dimensional vorticity thickness of the incoming profile. The spatial domain is dis-
cretized on a fully-staggered grid using second-order finite differences, except for the advective term, which is treated using a 
third-order upwind-biased scheme. Given the fully-staggered nature of the grid, we do not require explicit pressure boundary con-
ditions. Throughout, we work on a grid of size 𝑁𝑧 ×𝑁𝜉 = 600 × 200, we fix 𝐴 = 0.05, 𝜃0 = 0.025 and 𝜔 = 2𝜋0.6, and we consider two 
different Reynolds numbers 𝑅𝑒 = 1250 and 𝑅𝑒 = 1500. For this choice of parameters, it is shown by Shaabani-Ardali et al. [30] via a 
Floquet stability analysis that the 𝑇 -periodic solution is stable at 𝑅𝑒 = 1250 and unstable at 𝑅𝑒 = 1500. For both cases, we compute 
the 𝑇 -periodic solution via time-stepping of the Navier-Stokes equations (59) augmented with the time-delay feedback technique 
described in Shaabani-Ardali et al. [29]. This technique is necessary to compute unstable solutions via time-stepping (as in the 
𝑅𝑒 = 1500 case), but it can also be used to suppress transients in stable configurations (e.g., the 𝑅𝑒 = 1250 case) thereby accelerating 
the convergence to the desired post-transient solution. Representative snapshots from the two solutions are shown in Fig. 2.

7.2. Actuator and sensor configurations

We now provide details concerning the model-reduction procedure and we also describe the actuator and sensor configurations. 
Given the 𝑇 -periodic solution 𝑿 = (𝑈,𝑉 ) of the Navier-Stokes equations (59), the perturbed velocity field 𝒙′ =

(
𝑢′, 𝑣′

)
and the 

perturbed pressure 𝑝′, the linearized dynamics are governed by the equations

𝜕𝑢′ 𝜕𝑝′ 1
(
1 𝜕

(
𝜕𝑢′

)
𝜕2𝑢′

)
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𝜕𝑡
+𝐵𝑧(𝒙′,𝑿) = −

𝜕𝑧
+

𝑅𝑒 𝜉 𝜕𝜉
𝜉
𝜕𝜉

+
𝜕𝑧2

(62a)
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𝜕𝑣′

𝜕𝑡
+𝐵𝜉(𝒙′,𝑿) = − 𝜕𝑝′

𝜕𝜉
+ 1

𝑅𝑒

(
1
𝜉

𝜕

𝜕𝜉

(
𝜉
𝜕𝑣′

𝜕𝜉

)
− 𝑣′

𝜉2
+ 𝜕2𝑣′

𝜕𝑧2

)
(62b)

𝜕𝑢′

𝜕𝑧
+ 1

𝜉

𝜕
(
𝜉𝑣′

)
𝜕𝜉

= 0, (62c)

where

𝐵𝑧(𝒙′,𝑿) = 𝑢′
𝜕𝑈

𝜕𝑧
+𝑈

𝜕𝑢′

𝜕𝑧
+ 𝑣′

𝜕𝑈

𝜕𝜉
+ 𝑉

𝜕𝑢′

𝜕𝜉

𝐵𝜉(𝒙′,𝑿) = 𝑢′
𝜕𝑉

𝜕𝑧
+𝑈

𝜕𝑣′

𝜕𝑧
+ 𝑣′

𝜕𝑉

𝜕𝜉
+ 𝑉

𝜕𝑣′

𝜕𝜉
.

The boundary conditions on the perturbed velocity are analogous to those imposed on the full velocity field, except for the inflow 
where we impose zero Dirichlet boundary conditions on both velocity components. Upon removal of the pressure 𝑝′ via a Poisson 
equation and letting 𝒙′(𝑡) denote the spatially-discretized velocity at the cell faces of the computational grid, the system (62) may be 
written as a linear time-periodic system in standard form

d
d𝑡
𝒙′(𝑡) =𝑨(𝑡)𝒙′(𝑡), 𝑨(𝑡) =𝑨(𝑡+ 𝑇 ). (63)

Given our grid size, the state vector 𝒙′(𝑡) will have size 𝑁 = 2𝑁𝑧𝑁𝜉 = 2.4 × 105.
At this point, we need to specify how the control input will enter the dynamics. This is our first design choice, and we decide to 

actuate the flow through an axial velocity body force localized in the proximity of 𝑧𝑐 = 1 and 𝜉𝑐 = 0.5, with magnitude

exp
[
− 1

𝜃0

(
(𝑧− 𝑧𝑐)2 + (𝜉 − 𝜉𝑐)2

)]
𝑢(𝑡), (64)

where 𝑢(𝑡) is our control input. Thus, the matrix 𝑩 in equation (1) is a single column of height 𝑁 . Notice that here, the matrix 𝑩 is 
time-invariant, which means that the control input always enters the dynamics at the same physical location. We choose the location 
(𝑧𝑐 , 𝜉𝑐) near the jet nozzle, since this is where one might be able to place an actuator in practice. Additional insight into the actuator 
placement was also obtained from the sensitivity analysis in Padovan and Rowley [25], where the authors showed that the flow is 
most sensitive to axial velocity perturbations in the proximity of the nozzle. In general, in fact, actuators should be placed in regions 
of physical space where the flow is most “observable” (or, more intuitively, most sensitive to perturbations), so that a “small” control 
input can induce a “large” effect on the flow. It is also worth reporting that the exact location of the actuator did not seem to affect 
the performance of the closed-loop system, so long as it lied within the sensitivity region identified in Padovan and Rowley [25].

The second design choice concerns sensor placement. Throughout, we choose to measure the axial velocity at four different 
locations with radial coordinate 𝜉𝑐 = 0.5 and axial coordinates 𝑧𝑐 = {1.5, 2.5, 5, 6}. This yields a time-invariant matrix 𝑪 ∈ ℝ4×𝑁 , 
where each row is given by a spatial profile analogous to the one in (64). In choosing the sensor locations we considered the 
following. First, one or more sensors should be placed in proximity of the actuator in order to mitigate the detrimental effect of 
delays between the input and the measured response. Second, one or more sensors should be placed farther downstream since this is 
the location of the vortex pairing phenomenon that we wish to suppress. In general, for linear systems as the one considered herein, 
sensors should be placed in regions of physical space where the flow is most “controllable”. In the case of the jet, these are the regions 
of physical space where the flow develops large-scale deviations from the underlying base flow. While there exist systematic/optimal 
ways to place sensors for a given system, here we placed them based on the previously described heuristics. Some tests (not shown 
here) indicated that the closed-loop system defined in the upcoming section was not very sensitive to the exact location of the four 
sensors. However, we found, for example, that using fewer than three or four sensors led to poor performance of the observer and, 
consequently, to the inability of properly controlling the flow.

Given our 𝑩 and 𝑪 matrices, we henceforth work with the input-output system below

d
d𝑡
𝒙′(𝑡) =𝑨(𝑡)𝒙′(𝑡) +𝑩𝑢(𝑡)

𝒚(𝑡) =𝑪𝒙′(𝑡),
(65)

where 𝑢(𝑡) ∈ℝ is our control input (which will be determined by an appropriate feedback law) and 𝒚(𝑡) ∈ℝ4 is the measured output.
In order to compute the balancing transformation matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡) using Algorithms 1 and 2, we need to assemble the 

matrix 𝑻 (39) associated with the linearized dynamics (65). In particular, we truncate the Fourier representation of 𝑨(𝑡) at 𝑟𝑏 = 4
harmonics of the fundamental frequency 𝜔 (see formula (37)) and we truncate the EMP representation of the state 𝒙′(𝑡) at 𝑟 = 6
harmonics (see formula (38)). Thus, the matrix 𝑻 will have size (2𝑟 + 1)𝑁 = 3.12 × 106. Algorithm 1 is implemented in a PETSc-based 
solver run on the Princeton Tiger Cluster, and the linear solvers in the algorithm are preconditioned with PETSc’s built-in Block-
Jocobi preconditioner. The interval [0, 𝜔∕2] in Algorithm 1 is discretized using 11 equally-spaced points 𝛾𝑙 ∈ [0, 𝜔∕2]. After computing 
the balancing transformation matrices 𝚽𝚽𝚽(𝑡) and 𝚿𝚿𝚿(𝑡), we can explicitly assemble a reduced-order model of the form (58), where in 
this case the matrices 𝑩 and 𝑪 are time-invariant.

7.3. Feedback controller and state estimator design

Given a reduced-order model of the form (58) with reduced state 𝒒(𝑡) ∈ℝ𝑟, we can now approach the task of designing a feedback 
14

controller to modify the full-order dynamics. We design the feedback controller using the linear quadratic regulator (LQR) approach 
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for linear time-periodic systems. A thorough overview of the LQR problem for time-periodic systems is given in Wereley [32], 
while rigorous results on the existence and uniqueness of a periodic feedback law may be found in Bittanti et al. [3]. Simply put, 
given the 𝑚𝑇 -periodic linear system (58), the LQR method yields a 𝑚𝑇 -periodic feedback control law 𝑢(𝑡) = −𝑲(𝑡)𝒒(𝑡) by solving the 
optimization problem

min
𝑲(𝑡)

𝐿𝑄𝑅 =

∞

∫
0

(
𝒒(𝑡)∗𝑸𝑞(𝑡)𝒒(𝑡) + 𝑢(𝑡)2

)
d𝑡, (66)

subject to the dynamics in (58). Here, 𝑸𝑞(𝑡) is a positive-semidefinite 𝑟 × 𝑟 matrix that quantifies the relative importance of driving 
the states to zero, versus maintaining small control inputs. Our choice of 𝑸𝑞(𝑡) is informed by the analysis carried out in section 5C 
of Padovan and Rowley [25]. In particular, for 𝑅𝑒 = 1250, we demonstrated that the pairing phenomenon that we wish to suppress is 
driven exclusively by a 2𝑇 -periodic mode denoted 𝝃(𝑡). In order to suppress (or mitigate) vortex pairing, we therefore need to design 
a controller that rejects perturbations whose projection onto 𝝃(𝑡) is non-zero. Given the full-order state 𝒙′(𝑡) =𝚽𝚽𝚽(𝑡)𝒒(𝑡), and letting 
𝝃(𝑡) be normalized such that

1
2𝑇

2𝑇

∫
0

𝝃(𝑡)∗𝝃(𝑡) d𝑡 =
∑
𝑘∈ℤ

𝝃̂
∗
𝑘𝝃̂𝑘 = 1, (67)

the projection of 𝒙′(𝑡) onto 𝝃(𝑡) is given by 𝝃(𝑡)∗𝚽𝚽𝚽(𝑡)𝒒(𝑡). This information may be encoded into the LQR problem by choosing 𝑸𝑞(𝑡)
as follows,

𝑸𝑞(𝑡) = 𝛼
(
𝚽𝚽𝚽(𝑡)∗𝝃(𝑡)𝝃(𝑡)∗𝚽𝚽𝚽(𝑡)

)
, (68)

where 𝛼 is a positive scalar. The matrix 𝑸𝑞(𝑡) now contributes to the cost function 𝐿𝑄𝑅 by measuring the projection of the full-state 
onto the “most dangerous” mode. Consequently, the resulting optimal feedback law will try to change the dynamics by minimizing 
the projection of the state onto 𝝃(𝑡). The same rationale was applied in the 𝑅𝑒 = 1500 case.

In order to implement the feedback law discussed above, it is necessary to design a state estimator (or observer), which, given the 
available sensor measurements, computes a state estimate ̃𝒒(𝑡). The desired control input will then be given by 𝑢(𝑡) = −𝑲(𝑡)𝒒(𝑡). Here, 
we design an observer using the linear quadratic estimator approach, which assumes that the reduced state 𝒒(𝑡) and the measured 
output 𝒚(𝑡) are corrupted by Gaussian noise. More specifically, we suppose that 𝒒(𝑡) and 𝒚(𝑡) are governed by

d
d𝑡
𝒒(𝑡) =𝑨𝑟(𝑡)𝒒(𝑡) +𝑩𝑟(𝑡)𝑢(𝑡) +𝑩𝑟(𝑡)𝑑(𝑡)

𝒚(𝑡) =𝑪𝑟(𝑡)𝒒(𝑡) + 𝒏(𝑡),
(69)

where the disturbance 𝑑(𝑡) and the sensor noise 𝒏(𝑡) are zero-mean Gaussian processes with covariance 𝔼[𝑑(𝑡)𝑑(𝜏)] = 𝛽 𝛿(𝑡 − 𝜏) and 
𝔼[𝒏(𝑡)𝒏(𝜏)∗] = 𝑸𝑛𝛿(𝑡 − 𝜏), respectively. The linear operator 𝑩𝑟(𝑡) is 𝑚𝑇 -periodic and it is chosen by the user to model how the 
disturbance 𝑑(𝑡) enters the dynamics. We will elaborate on this choice shortly. It may be shown that the optimal state estimate 
𝒒(𝑡) is governed by the dynamics below

d
d𝑡
𝒒(𝑡) =

(
𝑨𝑟(𝑡) −𝑳(𝑡)𝑪𝑟(𝑡)

)
𝒒(𝑡) +𝑩𝑟(𝑡)𝑢(𝑡) +𝑳(𝑡)𝒚(𝑡), (70)

where the 𝑚𝑇 -periodic matrix 𝑳(𝑡) is chosen to minimize the expected estimation error

lim
𝑡→∞

𝔼
[‖‖‖𝒒(𝑡) − 𝒒(𝑡)‖‖‖].

In our implementation, we choose 𝑸𝑛 to be a diagonal matrix with entries

[𝑸𝑛]𝑖,𝑖 =
max𝑡 |𝑪𝑟(𝑡)|
max𝑡 |𝑪𝑟,𝑖(𝑡)| , (71)

where 𝑪𝑟,𝑖 denotes the 𝑖th row of the output matrix 𝑪𝑟(𝑡). This ensures that the resulting estimator responds equally strongly (or 
weakly) to changes in each measured output. Finally, we design the matrix 𝑩𝑟(𝑡) once again by leveraging the results from Padovan 
and Rowley [25]. According to that analysis, the only external disturbances that have a measurable effect on the flow are those that 
align with the aforementioned mode 𝝃(𝑡). Therefore, we choose

𝑩𝑟(𝑡) =𝚿𝚿𝚿(𝑡)∗𝝃(𝑡). (72)

That is, we model the disturbances that enter the dynamics via the “most dangerous” mode and we disregard all the other ones. A 
block diagram of the observer-based feedback configuration is shown in Fig. 3. Before moving forward, it is worth observing that 
the optimal estimation problem we just described is the dual of the LQR problem used for the controller design, and the solution to 
both problems can be obtained by solving the corresponding differential Riccati equations. Conveniently, these differential Riccati 
equations can be converted into equivalent frequency-domain algebraic Riccati equations (see section 5.2 of Wereley [32]), which 
15

can be solved easily with the lqr command in MATLAB or solve_continuous_are from scipy.linalg in Python.
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Navier-Stokes equations 
𝜕

𝜕𝑡
𝒙 = 𝒇 (𝒙, 𝑝) − 𝑩𝑢 +𝒘

∇ ⋅ 𝒙 = 0

Reduced-order 
observer eq. (70)

𝑲

𝒘 𝒚 =𝑪 (𝒙−𝑿)

𝒒

𝑩

−

𝑢

Fig. 3. Block diagram for the observer-based feedback configuration. The plant (labelled “Navier-Stokes equations”) represents equations (59) plus the additional 
feedback term −𝑩𝑢 and some external forcing input (or disturbance) 𝒘.

Fig. 4. 𝑅𝑒 = 1250. In panels (a) and (b) we show the sensor measurement from two of the four sensors from the simulation without control (green) and with feedback 
control (blue). In panels (c) and (d) we show the sensor measurement from the simulation with control (blue) and the predicted sensor measurement from the 
reduced-order estimator (orange).

7.4. Suppressing vortex pairing at 𝑅𝑒 = 1250

We begin by considering the case 𝑅𝑒 = 1250, where the 𝑇 -periodic base flow is linearly stable. However, as previously mentioned, 
almost every small perturbation triggers vortex pairing. Here, we wish to design a reduced-order feedback controller and observer 
to suppress vortex pairing. We begin by computing a reduced-order model using the balancing procedure described in Algorithms 1
and 2. The balanced model has period 2𝑇 (recall that it is possible that the ROM has a higher period than the underlying full-order 
model) and we select model size 𝑟 = 6. The truncation rank is chosen based on the decay of the singular values and on the predictive 
accuracy of the ROM, both shown in Appendix B. Using the reduced-order model, we design a feedback controller using the strategy 
discussed in section 7.3, and we select 𝑸𝑞(𝑡) in (68) with

𝛼 = 10−3
max𝑡 (𝚽𝚽𝚽(𝑡)∗𝝃(𝑡)𝝃(𝑡)∗𝚽𝚽𝚽(𝑡))

. (73)

We also design an estimator and we choose 𝛽 = 10. At this point we are ready to verify if we can suppress (or at least mitigate) the 
vortex pairing phenomenon. Since we know that vortex pairing is driven almost exclusively by the mode 𝝃(𝑡) in Padovan and Rowley 
(2022), we induce vortex pairing by forcing the nonlinear Navier-Stokes equations (59) with the external forcing input

𝒘(𝑡) = 10−3𝝃(𝑡), 𝒘(𝑡) =𝒘(𝑡+ 2𝑇 ), (74)

where 𝝃(𝑡) is normalized as in (67). The initial condition to the nonlinear full-order simulation is taken to be a state of heavy vortex 
pairing, while the initial condition for the reduced-order observer is set to zero. This is to emulate the realistic scenario where we do 
not have a good guess for the initial reduced-order state. We then integrate the (nonlinear) Navier-Stokes equations with and without 
feedback control, using the observer-based feedback configuration shown in Fig. 3. The results are shown in Figs. 4 and 6.

We begin with a brief discussion of Fig. 4, where we show the time history of the measurements from sensors 2 and 4 located 
at (𝜉, 𝑧) = (0.5, 2.5) and (𝜉, 𝑧) = (0.5, 6), respectively. In panels (a) and (b) we show the measured velocity of the flow with no control 
(green) and with observed-based feedback (blue). As hoped, we observe a significant reduction in the oscillation amplitude at both 
sensor locations when the feedback is active, meaning that the controller is successfully rejecting the disturbances that we are 
injecting into the flow. Panels (c) and (d) show the measured velocity of the flow with observer-based feedback (blue) and the 
predicted velocity from the reduced-order observer. Here, we see that at early times there are some discrepancies due to the fact that 
the nonlinear simulation is initialized with a non-zero initial condition, while the observer is initialized at zero. At later times, we see 
that the predicted output converges to the ground truth output, and this explains the success of the reduced-order controller/observer 
16

system in suppressing the oscillatory behavior of the flow.
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Fig. 5. Control input 𝑢(𝑡) for the closed-loop simulation at 𝑅𝑒 = 1250.

Fig. 6. 𝑅𝑒 = 1250. Vorticity snapshots at times 𝑡 ≈ 79𝑇 and 𝑡 ≈ 80𝑇 from the response with and without feedback control. The colorbar is the same as in Fig. 2.

In Fig. 6 we show representative vorticity snapshots from the simulations with and without feedback control. Without control, 
the vortex rings pair at an axial location around 𝑧 ≈ 5. When the flow is controlled, we see that vortex pairing is significantly 
delayed/mitigated, and vortex rings pair further downstream, at around 𝑧 ≈ 8. We conclude by observing that this controller/observer 
pair was able to modify the flow dynamics with a control input that never exceeds 𝑂(10−2) and actually remains below 5 × 10−3 for 
most of the times (see Fig. 5). This is indicative of the fact that the actuator is placed at a location where we have large control 
authority, and we therefore only require small-amplitude perturbations to modify the flow behavior. In a more practical setting, this 
means that this controller requires a low external energy supply, since it should not be energetically expensive to provide a velocity 
perturbation with magnitude equal to one thousandth of the flow characteristic velocity.

7.5. Suppressing vortex pairing at 𝑅𝑒 = 1500

We now consider 𝑅𝑒 = 1500, for which the 𝑇 -periodic base flow is unstable, and the flow spirals onto a 2𝑇 -periodic limit cycle 
characterized by pairing vortex rings. As before, we compute a ROM of dimension 𝑟 = 6 (see Appendix C for details), and we design 
a controller as well as an observer. We choose the LQR weight 𝑸𝑞(𝑡) as in (68) with 𝛼 given in (73). Similarly, the estimator weight 
is chosen as 𝛽 = 10. As in the previous section, we externally force the flow with the “most dangerous” forcing profile (74), except 
that the magnitude is set to 10−4. Since the base flow is unstable, vortex pairing will naturally occur even without the external 
forcing input. Here, however, we use this input to emulate the presence of external disturbances that perturb the flow on top of the 
underlying instability. The initial condition for the nonlinear full-order simulation is taken to be a state of heavy vortex pairing, while 
the initial condition for the reduced-order observer is set to zero. As explained in the previous section, this is a realistic choice based 
on the fact that we often lack knowledge of the initial state of the system. We then integrate the nonlinear Navier-Stokes equations 
in open loop and in closed-loop with the observed-based feedback configuration shown in Fig. 3. Results analogous to those shown 
in the previous section are shown in Fig. 7.

In this figure we see that the controller/observer pair is capable of suppressing the highly oscillatory behavior of the flow at all four 
sensor locations. Moreover, we see that the prediction of the measured output provided by the reduced-order estimator agrees well 
with the ground-truth measurements, especially at long times (see Figs. 7c and 7d). As in the previous section, the initial discrepancies 
arise because the observer was initialized with a zero initial condition, while the full-state had a non-zero initial condition.

Representative snapshots of the simulations with and without feedback control are shown in Fig. 9 at two different time instances. 
Remarkably, we see that while the uncontrolled flow exhibits strong vortex pairing (much stronger than at 𝑅𝑒 = 1250), the flow with 
feedback control does not. This means that the controller/observer pair successfully managed to suppress the underlying instability 
and to reject the most dangerous disturbance that we are injecting into the flow. Finally, we see from Fig. 8 that the feedback law 
generates a control input with magnitude 𝑂(10−2) at early times, but once the upstream oscillations (see, e.g., Fig. 7a) have been 
suppressed, the required control input drops by an order of magnitude. We would like to point out that even at early times, the 
17

demanded control input is significantly lower in magnitude than the flow characteristic velocity.
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Fig. 7. Analog of Fig. 4 for 𝑅𝑒 = 1500.

Fig. 8. Control input 𝑢(𝑡) for the closed-loop simulation at 𝑅𝑒 = 1500.

Fig. 9. Analog of Fig. 6 at 𝑅𝑒 = 1500.

8. Conclusion

In this paper we perform continuous-time balanced truncation for time-periodic systems using the frequency-domain represen-
tation of the reachability and observability Gramians. We have seen that these frequential Gramians are well-defined both when 
the underlying system is stable and when it is unstable. Moreover, when have seen that computing the Gramians using their 
frequency-domain representation can offer computational benefits, especially if the dynamics exhibit slowly-decaying transients. 
We demonstrated this approach on a periodically-forced axisymmetric jet at Reynolds numbers 𝑅𝑒 = 1250 and 𝑅𝑒 = 1500 (corre-
sponding to stable and unstable equilibria), and in both cases we used the balanced model to design reduced-order controllers and 
observers to suppress the vortex pairing phenomenon.
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Appendix A. Proofs

A.1. Proof of Proposition 2

We prove the proposition for 𝑷 (𝑡), since the result for 𝑸(𝑡) follows analogously. Let us define the quantity

𝑷̂ 𝑘 =
∑

𝑚,𝑙∈ℤ
𝑚=𝑘+𝑙

𝑷̂ 𝑚−𝑙 ∶=
∑

𝑚,𝑙∈ℤ
𝑚=𝑘+𝑙

1
2𝜋

∞

∫
−∞

𝒁𝑚(𝛾)𝒁 𝑙(𝛾)∗d𝛾. (A.1)

Given the definition of 𝒁𝑚(𝛾) in (18) and using Proposition 1, it follows that 𝑷̂ 𝑚−𝑙 satisfies the algebraic Sylvester equation below

(−𝑖𝑚𝜔𝑰 + 𝑱 ) 𝑷̂ 𝑚−𝑙 + 𝑷̂ 𝑚−𝑙

(
𝑖𝑙𝜔𝑰 + 𝑱 ∗)+𝑠𝑩̃𝑚𝑩̃

∗
𝑙 𝑠 −𝑢𝑩̃𝑚𝑩̃

∗
𝑙 𝑢 = 0. (A.2)

Summing over 𝑚 and 𝑙 as in (A.1), writing 𝑚 = 𝑘 + 𝑙, and using the linearity of the Sylvester equation, one can see that 𝑷̂ 𝑘 satisfies 
(13). In other words, 𝑷̂ 𝑘 is the 𝑘th Fourier coefficient of 𝑷 (𝑡). Writing 𝑷 (𝑡) as

𝑷 (𝑡) =
∑
𝑘∈ℤ

𝑷̂ 𝑘𝑒
𝑖𝑘𝜔𝑡 =

∑
𝑘∈ℤ

∑
𝑚,𝑙∈ℤ
𝑚=𝑘+𝑙

𝑷̂ 𝑚−𝑙𝑒
𝑖(𝑚−𝑙)𝜔𝑡 =

∑
𝑚,𝑙∈ℤ

𝑷̂ 𝑚−𝑙𝑒
𝑖(𝑚−𝑙)𝜔𝑡 (A.3)

concludes the proof.

A.2. Proof of Proposition 3

We need to show that

𝑯𝑘,𝑗 (𝛾) =
∑
𝑚∈ℤ

𝑽 𝑘−𝑚 (𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1𝑾 ∗
𝑗−𝑚. (A.4)

Let us start from (2) and write 𝒛(𝑡) and 𝒖(𝑡) as EMP signals (as in (26)), to obtain

𝒛𝑚+𝛾 = (𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1
∑
𝑗,𝑙∈ℤ

𝑾 ∗
𝑗−𝑚𝑩𝑗−𝑙𝒖𝑙+𝛾 . (A.5)

Using 𝒙(𝑡) = 𝑽 (𝑡)𝒛(𝑡), the coefficient 𝒙𝑘+𝛾 is given by∑
𝑚∈ℤ

𝑽 𝑘−𝑚𝒛𝑚+𝛾 =
∑

𝑚,𝑗,𝑙∈ℤ
𝑽 𝑘−𝑚 (𝑖𝛾𝑰 − (−𝑖𝑚𝜔𝑰 + 𝑱 ))−1𝑾 ∗

𝑗−𝑚𝑩𝑗−𝑙𝒖𝑙+𝛾 . (A.6)

Comparing (29) and (A.6) shows that (A.4) indeed holds, and this concludes the proof.

A.3. Proof of Proposition 4

The existence of such integer 𝑚 is immediate. Let us consider the quantity 𝒁𝒙,𝑘+𝛼𝑒
𝑖𝑘𝜔𝑡 ∶=

∑
𝑗∈ℤ𝑯𝑘,𝑗 (𝛼)𝑩𝑗𝑒

𝑖𝑘𝜔𝑡, which, from the 
definition of 𝑯 , satisfies

𝑖(𝛼 + 𝑘𝜔)𝒁𝒙,𝑘+𝛼𝑒
𝑖𝑘𝜔𝑡 =

∑
𝑙∈ℤ

𝑨𝑘−𝑙𝒁𝒙,𝑙+𝛼𝑒
𝑖𝑘𝜔𝑡 +𝑩𝑘𝑒

𝑖𝑘𝜔𝑡. (A.7)

Substituting 𝛼 = 𝛾 +𝑚𝜔 and manipulating the indices inside the sum, we obtain

𝑖(𝛾 + (𝑘+𝑚)𝜔)𝒁𝒙,(𝑘+𝑚)+𝛾 𝑒
𝑖𝑘𝜔𝑡 =

∑
𝑙∈ℤ

𝑨(𝑘+𝑚)−𝑙𝒁
(𝑗)
𝒙,𝑙+𝛾

𝑒𝑖𝑘𝜔𝑡 +𝑩𝑘𝑒
𝑖𝑘𝜔𝑡. (A.8)
19

Changing variables according to 𝑛 = 𝑘 +𝑚, we have
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Fig. B.10. Left-over variance (B.1), computed from the Hankel singular values of 𝒀 (𝑡)∗𝑿(𝑡) at 𝑅𝑒 = 1250.

Fig. B.11. Measured output 𝒚𝑖(𝑡) at all four sensor location from the linear impulse response at 𝑅𝑒 = 1250. Ground truth (black), ROM with size 𝑟 = 2 (purple), ROM 
with size 𝑟 = 4 (green), ROM with size 𝑟 = 6 (orange).

𝑖(𝛾 + 𝑛𝜔)𝒁𝒙,𝑛+𝛾 𝑒
𝑖(𝑛−𝑚)𝜔𝑡 =

∑
𝑙∈ℤ

𝑨𝑛−𝑙𝒁𝒙,𝑙+𝛾 𝑒
𝑖(𝑛−𝑚)𝜔𝑡 +𝑩𝑛−𝑚𝑒

𝑖(𝑛−𝑚)𝜔𝑡. (A.9)

Thus 𝒁𝒙,𝑘+𝛼𝑒
𝑖𝑘𝜔𝑡 =

∑
𝑗∈ℤ𝑯𝑘,𝑗 (𝛾)𝑩𝑗−𝑚𝑒

𝑖(𝑘−𝑚)𝜔𝑡, and this concludes the proof.

Appendix B. Reduced-order models at 𝑹𝒆 = 𝟏𝟐𝟓𝟎

In this section we study the performance of different reduced-order models (ROMs) as a function of the model size. Throughout, 
the Reynolds number 𝑅𝑒 = 1250, which gives us a linearly-stable periodic base flow with period 𝑇 .

We begin by computing the Hankel singular values 𝜎𝑖(𝑡) of the product 𝒀 (𝑡)∗𝑿(𝑡) (see Algorithm 2). From these singular values, 
we can compute the left-over variance, defined as

𝜆𝑖(𝑡) = 1 −
∑𝑖

𝑗=1 𝜎𝑗 (𝑡)2∑𝑁
𝑗=1 𝜎𝑗 (𝑡)2

. (B.1)

This quantity is shown in Fig. B.10, and we see that the input-output dynamics of the jet flow at 𝑅𝑒 = 1250 are very low rank since 
20

the first few Hankel singular values capture the greatest majority of the variance.
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Fig. C.12. Analog of Fig. B.10 at 𝑅𝑒 = 1500.

Fig. C.13. Analog of Fig. B.11 at 𝑅𝑒 = 1500.

Moving forward, we select ROM sizes 𝑟 = 2, 𝑟 = 4 and 𝑟 = 6, and we study the performance of these ROMs. In particular, we wish to 
see how well they can predict the output 𝒚(𝑡) in response to (linear) impulses 𝑩𝒖(𝑡) =𝑩𝛿(𝑡 − 𝜏). In other words, we compare the ROM 
to the ground truth obtained from numerical integration of the linearized Navier-Stokes equations. The outputs from an impulse at 
time 𝜏 = 0 are shown in Fig. B.11. Here we see that as we increase the ROM dimension (i.e., as we capture more of the variance), the 
predictive capabilities of the ROM improve. In particular, even at 𝑟 = 4, the ROM is capable of correctly predicting the amplitude and 
phase of the response. With 𝑟 = 6, we further improve on the early-time prediction. For completeness, it is worth mentioning that the 
ROMs have similar performance also for impulses at times 𝜏 ≠ 0 (although we do not show the corresponding plots here).

Appendix C. Reduced-order models at 𝑹𝒆 = 𝟏𝟓𝟎𝟎

Here, we perform the same analysis as in Appendix B, except that we consider 𝑅𝑒 = 1500. Recall that for this configuration the 
base flow is linearly unstable. The left-over variance is shown in Fig. C.12, while the measured output from a linear impulse response 
at time 𝜏 = 0 is shown in Fig. C.13. In the latter, we see that the ROMs of sizes 𝑟 = 4 and 𝑟 = 6 correctly predict the amplitude and 
phase of the measured outputs, as well as the linear growth rate due to the instability in the underlying base flow.
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