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resolvent: Application to vortex pairing in an axisymmetric jet
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In this paper we extend the harmonic resolvent analysis to study the dynamics of
subharmonic perturbations about a periodically time-varying base flow. In doing so, we
recover an input-output operator that is closely related to the harmonic transfer function
introduced in Wereley [Ph.D. thesis, MIT (1991)], and we also elucidate the nature of
the cross-frequency interactions between subharmonic flow structures in the proximity
of the base flow. We first demonstrate the use of this method on the Rössler system,
under conditions for which the dynamics are sensitive to period-doubling perturbations.
We then apply it to a forced incompressible axisymmetric jet, and we study how the jet’s
sensitivity to subharmonic perturbations varies as a function of the Reynolds number.
This analysis suggests that as the Reynolds number is increased, the cross-frequency
interactions between subharmonic structures with period 2T and the T -periodic base flow
become increasingly important. Remarkably, we also demonstrate that the well-known
nonlinear vortex pairing phenomenon is driven by the spatiotemporal structures contained
within the first right singular vector (or input mode) of the harmonic resolvent evaluated
at the 1/2-subharmonic of the fundamental frequency. In particular, we show that if the
nonlinear flow is forced with an input that is orthogonal to the first right singular vector of
the harmonic resolvent, then no pairing will occur.
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I. INTRODUCTION

Over the past few decades, model-based approaches rooted in linear systems theory have helped
shed light on the physics of complex, high-dimensional fluid flows. While there are a number
of linear techniques that can be used to analyze the dynamics of fluid flows in the proximity of
a solution of the Navier-Stokes equation, here we focus on the so-called input-output methods.
Perhaps the most well known is resolvent analysis [1–3], a frequency-domain technique that allows
one to study the input-output dynamics of perturbations about a steady base flow (typically either a
steady solution of the Navier-Stokes equation or the temporal mean of a data set of interest). This
method is particularly helpful for the analysis of nonnormal systems that exhibit large-amplitude
transient energy growth in response to external perturbations [2,3], but it has also been used
for controller design in unsteady turbulent flows [4,5]. While resolvent analysis is an appealing
analysis tool due to its (usually) low computational cost, it is well known that it loses its predictive
capabilities when the nonlinear dynamics evolve far away from the temporal mean or from a steady
solution of the Navier-Stokes equation. This is because the steady nature of the base flow is such that
this analysis neglects all the cross-frequency interactions in the flow. A successful effort to improve
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the performance of resolvent analysis by accounting for some of the triadic coupling that dominates
the dynamics in highly oscillatory flows can be found in [6]. Another noteworthy improvement of
resolvent analysis applied to wall-bounded flows was proposed in [7], where the authors treated the
action of the nonlinearity as a structured uncertainty that forces the linear part of the dynamics.

Recently, resolvent analysis was extended to flows that exhibit large-amplitude deviations from
the temporal mean or from a steady solution of the governing equations. More specifically, in
the harmonic resolvent analysis described in [8] the governing equations are linearized about a
periodically time-varying base flow that accounts for the aforementioned large-amplitude oscilla-
tions about the mean. This leads to a frequency-domain system of coupled equations where the
coupling is introduced by the time-varying nature of the base flow. Given its ability to capture the
first-order triadic interactions in the proximity of the base flow, the harmonic resolvent analysis can
be seen as a first step towards understanding the nature of the cross-frequency coupling in fluid
flows that are dominated by nonlinear effects. In this paper we present an extension of the harmonic
resolvent framework that considers subharmonic perturbations about a base flow with period T .
While previous work in [8] focused exclusively on the dynamics of T -periodic perturbations, here
we consider perturbations with period nT , for an integer n. These perturbations are of particular
interest in shear flows such as mixing layers and jets, whose selective sensitivity to subharmonic
flow structures lead to phenomena such as vortex merging and pairing [9,10]. Recently, the authors
in [11] showed that vortex pairing in an incompressible axisymmetric jet can be understood as
a Floquet instability arising from an underlying (unstable) periodic solution of the Navier-Stokes
equation. However, they also observed that the pairing can happen at Reynolds numbers much
lower than the critical Reynolds number, and they attributed this to the highly nonnormal nature
of the flow due to the presence of high-shear regions along the shear layer. We will show how the
harmonic resolvent framework can be used to confirm the highly nonnormal nature of the problem,
and also to obtain additional information regarding the driving mechanism behind vortex pairing.
In particular, we shall see that as the Reynolds number is increased, the input-output dynamics
are dominated by cross-frequency interactions between subharmonic perturbations with period 2T
and the T -periodic base flow. Furthermore, we will use this analysis to compute the spatiotemporal
structures that drive the vortex pairing mechanism.

The harmonic resolvent framework discussed herein lies at the intersection of harmonic balanc-
ing methods and linear time-periodic systems theory. Harmonic balancing methods are becoming
an increasingly popular technique for solving partial differential equations thanks to the fact that
they convert time-dependent problems into constant-coefficient algebraic systems of equations in
the frequency domain. A remarkable use of harmonic balancing is presented in [12], where the
authors studied the transition to turbulence in a volumetrically forced incompressible boundary
layer. As far as linear time-periodic systems theory is concerned, historic and recent applications
to incompressible flows in the time domain can be found in [13–15]. In [13] the authors studied
the stability properties of the two-dimensional wake of a circular cylinder via a Floquet analysis,
and they detected a three-dimensional instability at Reynolds number Re ≈ 189. More recently,
the authors in [14] sought the optimal inflow forcing profile that would maximize spreading in an
incompressible jet linearized about an axisymmetric time-periodic solution of the Navier-Stokes
equation. Similarly, in [15] the authors studied the linear energy-amplification mechanisms in
pulsatile channels and pipes. Examples of the use of the frequency domain for the analysis of
periodic fluid flows can be found in [16–18]. The authors in [16] proposed a computationally
efficient approach to compute the H2 norm of linear time-periodic systems where the periodic
component of the dynamics is small. In particular, by expanding the periodic dynamics in pow-
ers of a parameter ε � 1, they showed that the H2 norm of the system can be approximated
to second order by solving a sequence of simplified Lyapunov and Sylvester equations in the
frequency domain. They then demonstrated their approach on a pressure-driven two-dimensional
channel subject to streamwise (small-amplitude) time-periodic oscillations of the bottom wall. The
theoretical developments presented in [16] were also used in [17] and [18]. In [17] the authors
performed a receptivity analysis of the linearized Navier-Stokes equations to inform the design
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of small-amplitude streamwise traveling waves to suppress transition to turbulence in a channel.
Similarly, in [18], the authors designed small-amplitude transverse wall oscillations to achieve
turbulent drag reduction in channel flow. These references stand out as examples of how to develop
flow control strategies by leveraging the frequency-domain structure of linearized models that are
periodic in time, but where the periodic component is small. Finally, a formalism similar to the ones
described herein was used in [19] and [20] to account for the effect of spanwise-periodic riblets in a
turbulent channel and to design spanwise-periodic riblets for turbulent drag reduction in a channel,
respectively. In these references, the spatially periodic structure of the riblets was not assumed to
be small, so the analysis tools used in [19] and [20] may be understood as the spatial analog of
the temporal harmonic resolvent that we discuss in this paper. For a comprehensive summary of
resolvent-like methods for the space-time analysis of fluid flows, we refer the reader to the recent
review [21].

The structure of this paper is as follows. In Sec. II we present the extension of the harmonic
resolvent to study the dynamics of subharmonic perturbations. In particular, we will see that if
we seek a (nT )-periodic solution of the linearized Navier-Stokes equation about a T -periodic base
flow, the problem decouples into n subproblems that can be solved separately at a much lower
computational cost. This will lead to the definition of an input-output operator that is closely related
to the harmonic transfer function discussed in [22]. Henceforth, we will refer to this input-output
operator as harmonic resolvent operator. It will become clear in Sec. II that the operator in [8] is
a special case of the harmonic resolvent discussed herein when the period of the perturbations is
the same as the period of the base flow (γ = 0, in the notation of Sec. II). In Sec. III we show
that, similarly to the resolvent analysis in [2,3], the singular value decomposition of the harmonic
resolvent operator provides information about the dominant input-output mechanisms of the flow
in the proximity of the periodic orbit. Moreover, since the harmonic resolvent operator supports
coupling between selected frequency pairs, we show that the singular value decomposition of
the blocks of the harmonic resolvent operator can shed light on the cross-frequency input-output
dynamics. In Sec. IV we demonstrate the use of this method on the Rössler equations under
conditions for which the system is highly sensitive to period-doubling perturbations. Finally, in
Sec. V we apply the harmonic resolvent framework to the periodically forced axisymmetric jet
considered in [11]. Here we identify the mechanisms by which the flow selectively amplifies
subharmonic perturbations and we use these results to explain why the authors in [11] observed
vortex pairing in an otherwise linearly stable flow configuration. In particular, we demonstrate that
if the nonlinear flow is forced with an input that is orthogonal to the optimal input mode of the
harmonic resolvent evaluated at the 1/2-subharmonic of the fundamental frequency, then no vortex
pairing occurs. We therefore conclude that the optimal input mode defines the spatiotemporal signal
that is responsible for vortex pairing. In both examples we also provide a comparison with the results
obtained by performing the mean-based resolvent analysis.

II. MATHEMATICAL FORMULATION

In this section we extend the harmonic resolvent framework [8] by considering perturbations
with period nT about a T -periodic base flow. This will lead to the definition of an input-output
operator that is closely related to Wereley’s harmonic transfer function [22]. As mentioned in the
introduction, we refer to this input-output operator as the harmonic resolvent operator, and it will
become clear that the operator described in [8] arises as a special case when the perturbations have
the same period as the base flow. The reader who is familiar with the harmonic transfer function
literature [22] may be used to working in the space of exponentially modulated periodic (EMP)
signals. In this section we choose to proceed in a different fashion, and we rely exclusively on
the Fourier transform. We favor this approach because it does not require a priori knowledge of
EMPs, and because it sheds light on the reason why EMPs are appropriate test signals for the
frequency-domain analysis of periodic systems. The equivalence between our derivation and the
derivation using EMPs is clarified in Remark 1 in Sec. II C.
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A. Frequency-domain representation of linear time-periodic dynamics

Let us consider a nonlinear dynamical system with state q(t ) ∈ RN , whose time evolution is
governed by

d

dt
q(t ) = g(q(t )). (1)

In our present context, this can be understood as the spatially discretized incompressible Navier-
Stokes equation, and the state vector contains the three-dimensional velocity and the pressure at
the cell faces (or cell centers) of the computational grid. Normally, formula (1) is also equipped
with an algebraic constraint on the velocity field (i.e., the continuity equation). However, it is well
known that this constraint can often be removed from the formulation by expressing the pressure as
a function of the velocity by means of a Poisson equation. Therefore, we move forward by working
with the constraint-free system (1). Algebraic constraints on the state q(t ) can be handled with a
straightforward modification of the harmonic resolvent framework discussed in this paper. Letting
Q(t ) = Q(t + T ) denote a T -periodic base flow, we perform the state decomposition

q(t ) = Q(t ) + q′(t ), (2)

where q′(t ) denotes a perturbation about Q(t ). We observe that, in general, the perturbation q′(t )
need not be periodic. Upon substitution of (2) into the governing equation (1), we obtain

d

dt
q′(t ) = Dqg(Q(t ))︸ ︷︷ ︸

A(t )

q′(t ) + f ′(t ), (3)

where f ′(t ) contains higher-order terms O(‖q′‖2) as well as an additional error term if the base flow
does not satisfy (1) exactly. By virtue of the T periodicity of the base flow, the Jacobian A(t ) is also
periodic with period T . We henceforth assume that A(t ) is a differentiable function of time; this
guarantees the existence of a unique solution to (3) (see, e.g., Theorem 3.2 in [23]), and furthermore
it implies nice properties of the Fourier series of A(t ) (e.g., pointwise convergence, and square
summability of the Fourier coefficients). A simple rescaling of time allows us to take T = 2π , so
the Fourier series of A(t ) has the form

A(t ) =
∑
k∈�̃

Âkeikt , �̃ = {. . . ,−2,−1, 0, 1, 2, . . . }. (4)

We observe that the frequency set �̃ is potentially infinite. In practice, however, it will contain a
few frequencies associated with the energetically dominant coherent structures that we observe in
the flow. While in [8] we were interested in studying the dynamics of perturbations q′(t ) with the
same period as the base flow, here we consider perturbations with period 2πn, where n is a natural
number. Since solutions of (3) are differentiable with respect to time, we can expand q′(t ) in a
square-summable Fourier series with fundamental frequency 1/n,

q′(t ) =
∑
α∈�

q̂αeiαt , � =
{

. . . ,−2

n
,−1

n
, 0,

1

n
,

2

n
, . . .

}
. (5)

We refer to � as the frequency set associated with the perturbations q′(t ). It is convenient, from
a notational standpoint, to let the set � be infinite. In practice, however, we truncate � at some
appropriate frequency r/n that depends on how accurately we wish to resolve the temporal evolution
of the perturbations q′(t ). Plugging formulas (5) and (4) into (3), and writing f ′(t ) as a Fourier series
over � as in (5), we obtain

iαq̂α =
∑
β∈�

(α−β )∈�̃

Âα−β q̂β + f̂ α, ∀α ∈ �. (6)
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FIG. 1. Two frequencies α, β ∈ � are linked if α − β ∈ �̃. Two frequencies α, β ∈ � share the same
color (hence are coupled) if α = β (mod 1).

Formula (6) is a system of linearly coupled equations, where structures at frequency α are coupled to
structures at frequency β through the base flow at the frequency difference (α − β ) ∈ �̃. However,
we will see shortly that this equation hides n decoupled systems of equations that can be solved
separately at a much lower computational cost. Uncovering the decoupled nature of the problem
will also help us understand the nature of the triadic frequency coupling in the proximity of the base
flow.

B. Understanding the cross-frequency coupling

In this section we show how the convolution-like sum in formula (6) couples structures at
different frequencies. We will do so using a simple example. Consider the base flow set below,
and a perturbation set with fundamental frequency 1/n, where we take n = 3:

�̃ = {−1, 0, 1}, � =
{

. . . ,−7

3
,−6

3
,−5

3
, . . . ,−1

3
, 0,

1

3
, . . . ,

5

3
,

6

3
,

7

3
, . . .

}
. (7)

We now show that the three disjoint subsets of � given below contain the frequencies that are
nontrivially coupled to one another through the base flow set �̃:

�−1/3 =
{

. . . ,−7

3
,−4

3
,−1

3
,

2

3
,

5

3
, . . .

}
,

�0 = {. . . ,−2,−1, 0, 1, 2, . . . }, (8)

�1/3 =
{

. . . ,−5

3
,−2

3
,

1

3
,

4

3
,

7

3
, . . .

}
.

As previously discussed, the coupling between frequencies α, β ∈ � is supported by the base flow
at the frequency difference (α − β ) ∈ �̃. For example, it is easy to verify that for every α ∈ �1/3,
there exists a β �= α in the same set such that (α − β ) ∈ �̃. We therefore say that the frequencies in
�1/3 are coupled through the base flow. Conversely, there is no frequency α ∈ �1/3 and no frequency
β ∈ �0 such that (α − β ) ∈ �̃. So the frequencies in �1/3 are fully decoupled from those in �0. A
schematic of the cross-frequency coupling is shown in Fig. 1. It is also useful to observe that all the
sets in (8) can be written as

�γ = γ + {. . . ,−2,−1, 0, 1, 2, . . . }, γ ∈
{

− 1

3
, 0,

1

3

}
, (9)

where the + in the definition of �γ denotes element-wise addition. In general, the following rule
can be used to determine whether any two frequencies are coupled.

Property II..1. Let �̃ and � be given as in (4) and (5), respectively. Two frequencies α, β ∈ �

are coupled if α = β (mod 1). Letting Z denote the set of integers, it follows that the set � can be
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partitioned into n disjoint subsets �γ of the form

�γ = γ + Z, γ ∈ � =
{

− 1

n

⌊
(n − 1)

2

⌋
, . . . ,−1

n
, 0,

1

n
, . . . ,

1

n

⌊n

2

⌋}
. (10)

Observe that −1/2 < γ � 1/2 for every value of n. Furthermore, when n is even we see that �

contains the element 1/2, but it does not contain −1/2. This is because �1/2 = �−1/2, so including
−1/2 would be redundant.

We can now uncover a second property. It is easy to see using our simple example that �−1/3 =
−�1/3. Thus, the Fourier coefficients of q′(t ) corresponding to the frequencies in �−1/3 are merely
the complex conjugates of the Fourier coefficients corresponding to the frequencies in �1/3. For
our example in (7), this means that it suffices to explicitly solve for the Fourier coefficients of q′(t )
over the sets �0 and �1/3, while the Fourier coefficients over �−1/3 can be obtained by complex
conjugating the coefficients over �1/3. In general, we have the following property.

Property II..2. Let the frequency sets �γ be given as in property II.1. The signal q′(t ) in (3) is
fully determined by its Fourier coefficients over the sets �γ with 0 � γ � 1/2.

While property II.1 states that the original problem (6) decouples into n separate problems,
property II.2 states that only 	n/2
 of these need to be solved explicitly. This is of course beneficial
from a computational standpoint, since solving 	n/2
 smaller decoupled problems is much easier
than solving one large coupled system of equations. We are now equipped to define the harmonic
resolvent operator.

C. The harmonic resolvent operator

In this section we adopt the following notation. Given a periodic signal q′(t ) with period 2πn,
we define

Fγ (q′(t )) = (. . . , q̂γ−1, q̂γ , q̂γ+1, . . .), γ ∈ �, (11)

where q̂α are the Fourier coefficients as given in (5). This can be understood as an infinite-
dimensional vector containing a subset of the Fourier coefficients of q′(t ), namely, those
corresponding to frequencies in the set �γ = γ + Z. We now use the properties discussed in the
previous section to introduce the harmonic resolvent operator. Let us recall that property II.1 states
that problem (6) decouples into n separate problems over the sets �γ . We can therefore constrain
our attention to the Fourier coefficients of q′(t ) and f ′(t ) corresponding to the frequencies in �γ ,
for some fixed γ ∈ [0, 1/2] according to property II.2. Moreover, any α ∈ �γ can be written as
(γ + k) for some integer k ∈ Z. We then proceed as follows. We start from formula (6), replace �

with �γ and write α = γ + k and β = γ + j, to obtain

i(γ + k)q̂γ+k =
∑
j∈Z

(k− j)∈�̃

Âk− j q̂γ+ j + f̂ γ+k, ∀k ∈ Z. (12)

Formula (12) is a system of coupled linear equations, and it can be written compactly by defining
appropriate linear operators. In particular, letting q̂ = Fγ (q′(t )), we introduce the operator

[T̂ q̂]k+γ = −ikq̂γ+k +
∑
j∈Z

(k− j)∈�̃

Âk− j q̂γ+ j . (13)

It is important to observe that T̂ does not depend on γ , but only on the base flow set �̃. Formula
(12) can finally be written compactly as

(iγ I − T̂ )q̂ = f̂ , (14)

where I is the identity operator. Before moving forward, it is instructive to discuss the structure of the
operator T̂ . First, we observe that it is infinite-dimensional since it acts on the infinite-dimensional
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vector q̂. Second, it can be visualized in matrix form as follows:

T̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . . R̂−2 Â−1 Â−2
. . .

. . . Â1 R̂−1 Â−1 Â−2
. . .

. . . Â2 Â1 R̂0 Â−1 Â−2
. . .

. . . Â2 Â1 R̂−1 Â−1
. . .

. . . Â2 Â1 R̂−2
. . .

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R̂k = (−ikI + Â0) ∈ CN×N , (15)

where we recall that N is the dimension of the state vector q′(t ). The number of off-diagonal bands
in T̂ is equal to the number of nonzero frequencies in the base flow set �̃. Moreover, Â−k is the
complex conjugate of Âk , since the matrix A(t ) is a real-valued function of time. If the base flow
is steady, then the off-diagonal blocks are zero and T̂ is a block-diagonal operator. Consequently,
there no longer is any cross-frequency coupling between structures at different frequencies. It is also
important to observe that given a diagonal block R̂k , the operator −R̂

−1
k is the resolvent operator

discussed in [2,3] and evaluated at frequency k. Thus, when the base flow is steady, the operator
(iγ I − T̂ ) is block diagonal with blocks −R̂(γ+k), and we recover the well-known resolvent analysis.

Resuming from formula (14), we now wish to define the harmonic resolvent operator as a linear
operator that maps inputs f̂ to outputs q̂. However, properly defining this operator requires some care
and we first need to address a subtlety. Specifically, it is straightforward to show that if the nonlinear
dynamics in (1) admit time-periodic solutions Q(t + ε) for any phase shift ε, then T̂ (assembled
about the base flow Q(t )) is singular and its nullspace is spanned by the Fourier coefficients of
v(t ) := dQ(t )/dt . In other words, T̂ v̂ = 0, where v̂ = F0(v(t )). This scenario is very common, and
it is most often encountered when the homogeneous nonlinear dynamics (1) admit time-periodic
solutions (e.g., incompressible flow past a body at moderately low Reynolds numbers and periodic
orbits in turbulent regimes). Conversely, if the periodic solution arises in response to some external
time-periodic forcing (e.g., flows in turbomachinery and rotorcraft), then the latter usually sets
the phase of the solution and the nullspace of T̂ will be trivial. We henceforth refer to the time
derivative of the base flow as the direction of phase shift about the base flow. This singularity of
T̂ is problematic because the direction of phase shift is physically uninteresting, and, at the same
time, it prevents us from defining the harmonic resolvent as the inverse of (iγ I − T̂ ) (in fact, this
inverse is undefined for γ = 0). Since we want our definition to hold for all γ , we need to remove
this singularity by restricting the domain of T̂ to a physically meaningful subspace 	 on which T̂ is
bijective. In order to define this subspace 	, we begin by requiring that for all times all time-periodic
solutions of the linear dynamics in (3) lie in the range of the 2π -periodic oblique projection

P(t ) = I − v(t )u(t )∗. (16)

Here u(t ) is a 2π -periodic signal such that u(t )∗v(t ) = 1 for all times, so that P(t ) is a projection
(i.e., P(t )2 = P(t )). In particular, we choose u(t ) such that T̂

∗
û = 0, where û = F0(u(t )). In other

words, the Fourier coefficients of u(t ) span the left nullspace of T̂ . The efficient computation of û
is discussed in Appendix A. Clearly, the projection P(t ) annihilates any component along the phase
shift direction, since P(t )v(t ) = 0 for all times. Since P(t ) is 2π -periodic, it can be written in a
Fourier series

P(t ) =
∑
k∈Z

P̂keikt , P̂k = Iδk,0 −
∑
j∈Z

v̂k+ j û∗
j , (17)
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where δk,0 = 1 if k = 0 and δk,0 = 0 otherwise. We can then define the frequency-domain represen-
tation of P(t ) as

[P̂q̂]k+γ =
∑
j∈Z

P̂k− j q̂γ+ j . (18)

The desired subspace 	 is defined as the range of P̂. It can be shown that 	 is an invariant subspace
of T̂ and, by design, T̂ is bijective on 	. Thus, letting T̂	 denote the restriction of T̂ onto 	, the
harmonic resolvent operator is given by

H (iγ ) = (iγ I − T̂	 )−1. (19)

This is a linear input-output operator that maps the Fourier coefficients of inputs f ′(t ) ∈
Range(P(t )∗) with period T/γ and frequency content �γ to the Fourier coefficients of outputs
q′(t ) ∈ Range(P(t )) with period T/γ and frequency content �γ . It is important to observe that
above we have used a slightly different projection than that used in [8]: in that formulation, the
perturbations F0(q′(t )) were constrained to the orthogonal complement of v̂, while here they
are constrained to the range of P̂. Consequently, when γ = 0, we do not recover the previous
definition of harmonic resolvent. While the definition in [8] is mathematically correct and physically
meaningful, the orthogonal complement of v̂ may not be invariant under T̂ (unless T̂ is a normal
operator, which is never the case in high-shear flows), so performing a projection onto v̂⊥ loses
its physical meaning when γ �= 0. In contrast, the projection as defined here is meaningful for
all choices of γ , including the case γ = 0 (i.e., the harmonic resolvent defined in [8]). Finally, we
observe for the sake of completeness that it is not necessary to evaluate H (iα) for α > 1/2. It is easy
to verify using sets of the form (10) that for any set �α with α > 1/2 there exists a γ ∈ [0, 1/2]
such that either �α = �γ or �α = −�γ . Thus, either H (iα) = H (iγ ) or H (iα) = H (iγ ), where
the overline indicates complex conjugation. For a computationally efficient way to compute with
H (iγ ), we point the reader to Appendix B.

Remark 1. As mentioned at the beginning of this section, the harmonic resolvent operator (19)
can be derived using exponentially modulated periodic (EMP) signals [22]. More precisely, this can
be done by writing q′(t ) in (5) as

q′(t ) = eiγ t
∑
k∈Z

q̂γ+keikt

︸ ︷︷ ︸
:=̃q(t )

, (20)

where the 2π -periodic component q̃(t ) of q′(t ) is modulated by eiγ t . Formula (12) (and therefore
(19)) can then be obtained by substituting formulas (20) and (4) into (3). While the derivation of the
harmonic resolvent H (iγ ) using EMPs may appear less cumbersome than the one presented in this
paper, it is precisely the frequency decoupling of subharmonics discussed in Sec. II B that makes
EMPs an appropriate class of signals for the analysis of the input-output dynamics of time-periodic
systems. For completeness, we observe that if γ is a rational number, then the Fourier coefficients
of the signal q′(t ) in (20) are precisely given by Fγ (q′(t )), and the associated frequency set is �γ .

III. AMPLIFICATION MECHANISMS

The spectral analysis of the harmonic resolvent operator can provide insightful information about
the physics of the flow under consideration. In the first subsection, we discuss how to extract
information about the global amplification mechanisms, while in the second subsection we discuss
how to probe the harmonic resolvent for information regarding the cross-frequency interactions that
dominate the flow dynamics.
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A. Global amplification mechanisms

Here we consider the problem of finding the input f̂ over the set of frequencies �γ that excites
the most energetic response through the harmonic resolvent H (iγ ). Mathematically, we seek

ψ̂1 = arg max
‖ f̂‖=1

∥∥H (iγ ) f̂
∥∥. (21)

It can be shown that the optimal forcing input ψ̂1 is the first right singular vector of H (iγ ), while the
corresponding output, which we denote φ̂1, is the first left singular vector of H (iγ ). The first singular
value σ1(γ ) can be understood as a gain, or amplification factor, on the leading input-output pair.
This provides a measure of the sensitivity of the flow to perturbations with a given frequency content
�γ . In particular, if σ1(γ ) > σ1(α) then we say that the flow is more sensitive to perturbations over
�γ than to perturbations over �α . We also remark that the optimal input and the optimal output
identify spatially and temporally coherent signals whose temporal evolution can be reconstructed as
follows:

ψ1(t ) =
∑
α∈�γ

ψ̂1,αeiαt + c.c., φ1(t ) =
∑
α∈�γ

φ̂1,αeiαt + c.c., (22)

where c.c. denotes the complex conjugate. It is worth pointing out that the complex conjugate is not
necessary if γ = 1/2 or γ = 0, since for any α ∈ �1/2 (resp. �0) we also have −α ∈ �1/2 (resp.
�0). By recognizing that any element α ∈ �γ can be written as α = γ + k for some k ∈ Z, we also
observe that the input and output modes in (22) can be expressed as EMP signals,

ψ1(t ) = eiγ t
∑
k∈Z

ψ̂1,γ+keikt + c.c., φ1(t ) = eiγ t
∑
k∈Z

φ̂1,γ+keikt + c.c. (23)

The importance of the optimal input and output signals and of the corresponding singular value can
be understood by writing the response q̂ to any input f̂ in terms of the singular value decomposition

H (iγ ) =
∑

k

σkφ̂kψ̂
∗
k . (24)

Assuming σ1  σ2 for simplicity, we can write

q̂ = H (iγ ) f̂ ≈ σ1φ̂1ψ̂
∗
1 f̂ . (25)

If the input f̂ has a nonzero projection onto ψ̂1, then q̂ will have a component in the direction of φ̂1.
In other words, the spatiotemporal evolution of the optimal response mode φ1(t ) describes the flow
structures that one expects to see in experiment or simulation when external perturbations force
the system. The signal ψ1(t ), on the other hand, identifies the spatiotemporal structures that are
responsible for exciting the response φ1(t ). These modes can be used to understand the physics of
the flow, but also to develop a control strategy to meet some control objective. For instance, if one
wants to excite the flow response φ1(t ), then they would select a control input that aligns well with
ψ1(t ). Similarly, if one wants to suppress the spatiotempotal waveform φ1(t ), they could design a
controller that rejects disturbances that align with ψ1(t ). Finally, it is worth observing that if σ1  1
(i.e., the flow is very sensitive to disturbances over the frequency set �γ ), then any f̂ with a small
component along the direction ψ̂1 will suffice to trigger a large response q̂ in the direction φ̂1. We
will see in Sec. V that this is precisely why we observe vortex pairing in the jet flow.

It is important to remark that the cost function in the optimization problem in (21) can be
expressed in terms of a weighted norm ‖û‖2

Ŵ
= û∗Ŵ û, for some positive-definite weight Ŵ . It

is then straightforward to show that the solution ψ̂1 is equal to the first right singular vector of the
linear operator

H̃ (iγ ) = Ŵ
1/2

H (iγ )Ŵ
−1/2

, (26)
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where Ŵ
1/2

denotes the square root of Ŵ . The physical interpretation of the optimal input and
output modes and corresponding singular value remains unchanged.

B. Cross-frequency amplification mechanisms

We have seen in the previous sections that the time-varying nature of the base flow introduces
coupling between flow structures over the set �γ . We can therefore consider the problem of finding
the input f̂ β at frequency β ∈ �γ that excites the most energetic response q̂α at frequency α ∈ �γ .
Letting Hα,β (iγ ) denote the block of the harmonic resolvent operator that maps inputs f̂ β to outputs
q̂α , we seek

ψ̂β,1 = arg max
‖ f̂ β‖=1

∥∥Hα,β (iγ ) f̂ β

∥∥. (27)

As before, the optimal forcing input ψ̂β,1 is the first right singular vector of Hα,β (iγ ), the corre-
sponding response, which we denote φ̂α,1, is the first left singular vector of Hα,β (iγ ), while the
first singular value σ(α,β ),1 is a gain on the leading input-output pair. This singular value can be
understood as a measure of how strongly inputs at frequency β affect the response of the flow
at frequency α. If σ(α,β ),1 > σ(α,η),1 then we say that disturbances at frequency β ∈ �γ are more
effective than disturbances at frequency η ∈ �γ at exciting an energetic response at α ∈ �γ . The
optimal input and output vectors identify spatially coherent structures that oscillate at frequencies β

and α, respectively,

ψ1,β (t ) = ψ̂1,βeiβt + c.c., φ1,α (t ) = φ̂1,αeiαt + c.c. (28)

As in the previous section, the optimization problem (27) can be written with respect to a weighted
inner product.

IV. APPLICATION TO A TOY MODEL: THE RÖSSLER SYSTEM

In this section we demonstrate the harmonic resolvent framework on the Rössler system under
conditions for which the dynamics are sensitive to period-doubling perturbations. We also present a
comparison with the well-known resolvent analysis (i.e., linearization about the temporal mean) and
we show how this analysis can fail to capture the qualitative sensitivity of the system to subharmonic
perturbations. Consider the Rössler system in the form

ẋ = −y − z,

ẏ = x + 0.1y,

ż = 0.1 + z(x − c).

(29)

As discussed in [24], these dynamics undergo a cascade of period-doubling bifurcations as we sweep
the bifurcation parameter c. Here we fix c = 5.3 and, using a Newton-based harmonic balancing
method, we find that (29) admits a periodic solution with period T ≈ 2π . This solution is shown
in Fig. 2(a). Our choice of parameter c is close to the critical value for one of the aforementioned
period-doubling bifurcations, so we expect the system to be very sensitive to any disturbance with
frequency ω/2, where ω = 2π/T is the fundamental frequency. We are interested in verifying
whether the harmonic resolvent analysis can be used to identify the frequency sets over which the
base flow is sensitive to perturbations. We also wish to check if this framework accurately predicts
the input-output dynamics of the flow under small-amplitude forcing. The harmonic resolvent results
are compared against the predictions provided by the mean-based resolvent analysis, which is
performed by linearizing the dynamics about the temporal mean of the T -periodic solution [see
black marker in Fig. 2(a)].

Throughout this section, we let our periodic base flow for the harmonic resolvent analy-
sis be given by the curve shown in Fig. 2(a). The base flow has frequency content in �̃ =
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FIG. 2. In (a) we show the periodic solution of (29) with period T ≈ 2π . The black marker indicates the
temporal mean. In (b) we show the leading singular value of the harmonic resolvent H (iγ ) for γ ∈ [0, ω/2].
In (c) we show the leading singular value of the mean-based resolvent operator evaluated at frequency γ .

{−20ω, . . . , 0, . . . , 20ω}, and we let the perturbations evolve over sets of frequencies �γ =
γ + {−30ω, . . . , 0, . . . , 30ω}, where 0 � γ � ω/2 by property II.2. We begin by computing the
singular value decomposition of the harmonic resolvent operator H (iγ ), defined in (19), and a plot
of the first singular value over 0 � γ � ω/2 is shown in Fig. 2(b). Figure 2(b) shows a clear peak
at γ = ω/2, which suggests that the flow is very sensitive to disturbances over the set �ω/2. By
contrast, in Fig. 2(c) the curve associated with the leading singular value of the mean-based resolvent
operators suggests that the flow is sensitive to perturbations that oscillate at frequency γ ≈ ω.

We now try to verify whether the results provided by the harmonic resolvent framework convey
reliable information about the nonlinear dynamics of the flow. In particular, we are interested in
checking whether the flow is more sensitive to perturbations at frequency ω, as indicated by the
mean-resolvent analysis, or if it is more sensitive to perturbations over the set �ω/2, as indicated by
the harmonic resolvent analysis. We perform a numerical test by introducing a forcing term f ′(t ) to
the governing equations (29),

f ′(t ) = εB cos(αt ). (30)

Here ε = 3 × 10−4, B ∈ R3 is a column vector of ones and we take α to be either equal to
5ω/2 ∈ �ω/2 or to ω. The results are shown in Figs. 3(a) and 3(b) for values α = 5ω/2 and α = ω,
respectively. We can see that the forcing input f ′(t ) triggers a much more energetic response
when it oscillates at frequency 5ω/2. The same forcing input at frequency ω excites a response
that is roughly two orders of magnitude less energetic. This is consistent with the information
provided by the singular values of the harmonic resolvent operators evaluated at different values
of γ . In particular, the leading singular value σ1(ω/2) is roughly two orders of magnitude larger
than σ1(0) [see Fig. 2(b)]. Figures 3(a) and 3(b) highlight additional details. First, the mean-based
resolvent prediction shown in green, is active only at the forcing frequencies α = 5ω/2 and α = ω,
respectively. This is due to the fact that the mean-based resolvent operator does not describe
cross-frequency interactions, since it is based on a linearization about a steady base flow. On the
other hand, the harmonic resolvent prediction shown in orange is active at multiple frequencies over
the sets �ω/2 and �0, respectively. We also observe that that the nonlinear response in Fig. 3(a)
is active (although very small) at frequencies kω with k an integer. This is exclusively due to
nonlinear interactions between perturbations. For instance, a perturbation at frequency ω/2 ∈ �ω/2

can nonlinearly interact with itself to produce a perturbation at frequency ω /∈ �ω/2. Nonlinear
(i.e., second-order) interactions between perturbations are disregarded in the harmonic resolvent
formulation, so the harmonic resolvent prediction in Fig. 3(a) is inactive at frequencies kω with
integer k. We take this opportunity to observe that if the forcing amplitude ε in (30) becomes too

073903-11



ALBERTO PADOVAN AND CLARENCE W. ROWLEY

0 2ω 4ω 6ω 8ω
Frequency

10−13

10−11

10−9

10−7

10−5

10−3
S
p
ec

tr
al

en
er

gy
(a)

0 2ω 4ω 6ω 8ω
Frequency

10−13

10−11

10−9

10−7

10−5

10−3

S
p
ec

tr
al

en
er

gy

(b)

FIG. 3. We show (a) the forced nonlinear response (purple), the harmonic resolvent prediction (orange) and
the mean-based resolvent prediction (green) for a forcing input (30) with ε = 3 × 10−4 and α = 5ω/2. Panel
(b) is the analog of (a) with α = ω.

large, then these second-order nonlinear effects start dominating the response of the system and the
harmonic resolvent may lose predictive accuracy.

V. APPLICATION TO AN INCOMPRESSIBLE FORCED AXISYMMETRIC JET

A. Flow configuration

In this section we consider an incompressible axisymmetric jet forced by an axial inflow ve-
locity. Throughout, velocities are nondimensionalized by the jet centerline velocity and lengths are
nondimensionalized by the jet diameter. The flow is governed by the incompressible Navier-Stokes
equation along with the continuity equation over the spatial domain D = {(z, r)| z ∈ [0, Lz], r ∈
[0, Lr]}, with Lz = 20 and Lr = 6. In particular, given the (dimensionless) axial velocity u, the radial
velocity v and the pressure p, we have

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
= −∂ p

∂z
+ 1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2

]
,

∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r
= −∂ p

∂r
+ 1

Re

[
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+ ∂2v

∂z2

]
,

∂u

∂z
+ 1

r

∂ (rv)

∂r
= 0.

(31)

At the centerline r = 0 we impose axisymmetric boundary conditions, at the outflow and at the top
boundary we impose a zero normal gradient boundary condition on both velocity components, and
at the inflow we consider the axial velocity profile

u(r, z = 0, t ) = g(r)(1 + A cos ωt ), (32)

where A is the nondimensional forcing amplitude, ω is the forcing frequency, and

g(r) = 1

2

{
1 − tanh

[
1

4θ0

(
r − 1

4r

)]}
. (33)

The parameter θ0 may be understood as a nondimensional vorticity thickness of the incoming
profile. The spatial domain is discretized on a fully staggered grid of size Nz × Nr = 800 × 300
using second-order finite differences. The advective term is treated using a third-order upwind-
biased scheme. Given the fully staggered nature of the grid, we do not require explicit pressure
boundary conditions. The time-stepping Navier-Stokes solver was validated by reproducing the
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FIG. 4. Vorticity snapshots from the T -periodic solution at time t = 0 for (a) Reynolds number Re = 500
and (b) Reynolds number Re = 1250. The colorbar ranges from 0 to 9 and it has been slightly saturated to
better visualize downstream vortices.

Floquet analysis in [11] for Re = 1000, and we registered less than 0.5% error on the least stable
Floquet multiplier.

Throughout this section, we consider fixed values A = 0.05, θ0 = 0.025, and ω = 6π/5, but we
consider several different Reynolds numbers: Re = 500, 750, 1000, 1250. This choice is motivated
by the recent work in [11], where the authors studied the stability and modal/transient growth
dynamics of the flow for a wide range of parameters. For the parameters considered herein, they
observed that for Re � 1350, the Navier-Stokes equations admit a stable T -periodic solution (where
T = 2π/ω) characterized by unpaired vortices. Snapshots from two such solutions at Re = 500 and
Re = 1250 are shown in Figs. 4(a) and 4(b). For larger Reynolds number values, the T -periodic
solution becomes linearly unstable and the flow settles onto a 2T -periodic orbit characterized by
vortex pairing. However, the authors also observed that vortex pairing can be easily triggered by low-
amplitude noise at Reynolds numbers well below the critical Reynolds number for modal instability,
and they attributed this behavior to the large-amplitude transient growth due to the nonnormality of
the underlying linear operator. Here we confirm the nonnormal nature of the linearized dynamics
by studying the spectral properties of the harmonic resolvent operator over all frequency sets �γ ,
for γ ∈ [0, ω/2]. We also offer an additional explanation regarding the driving mechanisms behind
vortex pairing. In particular, we will use the harmonic resolvent to uncover the fact that the pairing
mechanism is driven by complicated frequency interactions between the subharmonic frequency
ω/2 and its odd harmonics. Finally, we use nonlinear direct numerical simulations to demonstrate
that vortex pairing is driven by the spatiotemporal structure defined by the first right singular vector
of the harmonic resolvent evaluated at γ = 1/2. We also perform a mean-based resolvent analysis
for comparison.

B. Sensitivity analysis via the harmonic resolvent and mean-based resolvent

In this section we study the sensitivity of the flow to subharmonic perturbations in the proximity
of the T -periodic base flow at four different Reynolds numbers: Re = 500, 750, 1000, 1250. We
do so by performing the global (Sec. III A) and cross-frequency (Sec. III B) spectral analyses of
the harmonic resolvent operators H (iγ ) for γ ∈ [0, ω/2]. Recall that, as discussed at the end of
Sec. II C, the harmonic resolvent operators need to be evaluated only over the interval [0, ω/2]
in order to fully characterize the dynamics of perturbations. Throughout this section we will
take the base flow set to be �̃ = ω{−4, . . . , 0, . . . , 4}, and we will consider perturbations over
frequency sets �γ = γ + ω{−6, . . . , 0, . . . , 6}. We also perform the mean-based resolvent analysis
by computing the singular value decomposition of the resolvent operator R(iγ ) for γ ∈ [0,∞). For
all four Reynolds numbers, the periodic base flow (and hence the temporal mean) was computed
via numerical integration of the Navier-Stokes equation using the time-delayed feedback technique
described in [25] to suppress transient growth and to accelerate convergence to the desired solution.
It is also worth observing that since the inflow boundary condition determines the phase of the
solution, the operator T̂ evaluated about the T -periodic solution of the Navier-Stokes has a trivial
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FIG. 5. (a) The first singular value of the harmonic transfer function H̃ (iγ ) (37) as a function of γ for four
different Reynolds numbers Re = 500, 750, 1000, 1250. (b) The first singular value of the mean-based trans-
fer function R̃(iγ ) (37) as a function of γ for four different Reynolds numbers Re = 500, 750, 1000, 1250.

nullspace. Therefore, the harmonic resolvent in (19) can be safely defined in terms of T̂ instead
of T̂	 . Moving forward, we also restrict our attention to flow structures over the spatial domain
D̃ = {(r, z) | 0 � r � 2.5, 0 � z � 20}. We do so by defining two operators B and C that are equal
to the identity on D̃ and zero otherwise. This is done in order to mitigate spurious amplification
mechanisms associated to mass entrainment from the top boundary located at r = 6. These manifest
themselves as energetic zero-frequency input-output structures supported in close proximity of the
top boundary. While entrainment is a physical phenomenon, we believe that the high sensitivity of
the flow at the top boundary detected by the harmonic resolvent and by the mean-based resolvent
is simply an artifact of domain truncation in the radial direction. In any case, we are not interested
in amplification mechanisms far away from the shear layer so, for this example, we consider the
input-output operator

H (iγ ) = Ĉ(iγ I − T̂ )−1B̂, (34)

where B̂ = I ⊗ B and Ĉ = I ⊗ C (that is, block diagonal matrices formed from B and C). Similarly,
for the mean-based resolvent analysis we consider the operator

R(iγ ) = C(iγ I − Â0)−1B, (35)

where Â0 denotes the linearization of the Navier-Stokes equation about the temporal mean. In the
presence of the input and output matrices B̂ and Ĉ, the operator H (iγ ) in (34) is precisely the
harmonic transfer function discussed in [22], while R(iα) in (35) is the well-known linear time-
invariant transfer function.

The spectral analysis of H (iγ ) and R(iα) is performed by solving the optimization problem (21)
in the radially weighted norm

‖u‖2 =
∫
D

|u(r, z)|2r dr dz. (36)

In other words, letting W denote the matrix representation of the weight, and letting Ŵ = I ⊗ W ,
we compute the singular values of

H̃ (iγ ) = Ŵ
1/2

H (iγ )Ŵ
−1/2

, R̃(iγ ) = W 1/2R(iγ )W −1/2. (37)

Plots of the first singular value of H̃ (iγ ) and R̃(iγ ) across the considered Reynolds numbers are
shown in Figs. 5(a) and 5(b), respectively. For all Reynolds numbers, the singular value σ1 of the
harmonic transfer function H̃ (iγ ) peaks at γ = ω/2, which suggests that the flow is most sensitive
to perturbations over the frequency set �ω/2 = ω/2 + ω{−6, . . . , 0, . . . , 6}. On the other hand, for
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FIG. 6. For Reynolds numbers Re = 500, 750, 1000, 1250, we plot the quantity Ek, j defined in (38).

all Reynolds numbers, the singular value of the mean-based transfer function R̃(iγ ) peaks at γ ≈
ω/2, and this suggests that the flow is sensitive to flow structures that oscillate at the single frequency
γ ≈ ω/2. Both analyses show an increase in sensitivity as the Reynolds number is increased, but the
harmonic transfer function shows a much steeper increase in the magnitude of the singular value.
In order to explain this discrepancy, we must study how frequencies within the set �ω/2 interact
with one another, and we do so by computing the cross-frequency singular values of H̃ (iω/2) (see
Sec. III B).

Plots of the cross-singular values of H̃ (iω/2) for Re = 500, 750, 1000, 1250 are shown in
Fig. 6. The blocks are color-coded according to the quantity

Ek, j = σ 2
(k, j),1

max(l,m) σ
2
(l,m),1

, (38)

where σ(k, j),1 denotes the leading singular value of the block H̃ (k, j)(iω/2) of the harmonic transfer
function. Large values (i.e., darker color) of Ek, j indicate that forcing the flow at frequency
(1/2 + j)ω excites a very energetic response at frequency (1/2 + k)ω. At Re = 500, in Fig. 6(a),
we see that self-interactions at frequency ω/2 dominate the input-output behavior, while other
cross-frequency interactions are weaker. As we increase the Reynolds number, we observe that
self-interactions at ω/2 remain strong, but the cross-interaction between ω/2 and its odd harmonics
becomes progressively stronger and unidirectional. By unidirectional we mean that while, for
instance, forcing at 3ω/2 excites a very amplified response at ω/2, the converse is not true.

The information contained within these plots sheds light on the reason why the harmonic transfer
function H̃ (iω/2) exhibited larger peaks in its singular value compared to the mean-based transfer
function R̃(iω/2) [see Figs. 5(a) and 5(b)]. In particular, while the peak in R̃(iω/2) is symptomatic
of strong self interactions at ω/2, the much larger peaks at H̃ (iω/2) are due to the fact that other
cross-frequency interactions (i.e., those highlighted in Fig. 6) are contributing the input-output
dynamics of the flow. We also offer the conclusions drawn from Fig. 6 as an explanation for
the observations made in [11], where the authors observed how low-amplitude noise could easily
trigger vortex pairing even in linearly stable configurations. First and foremost, we remark that
paired vortices are energetic flow structures that oscillate at frequency ω/2, and we also recall that
a noisy signal has frequency content across the entire frequency spectrum. Given the information in
Figs. 6(b)–6(d), it becomes clear that the flow amplifies many frequencies from the spectrum of the
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FIG. 7. On the left we show the vorticity field from the ω/2, 3ω/2, and 5ω/2 entries of the first right
singular vector (i.e., the first input mode) of H̃ (iω/2) at Re = 500. The right panels are the analog of the left
ones for the mean-based transfer functions R̃(iω/2), R̃(i3ω/2), and R̃(i5ω/2). The colorbar is not shown on
the right because these frequencies are decoupled and the modes are scaled arbitrarily.

noisy forcing profile, and it selectively injects energy into flow structures with frequency ω/2. In
other words, a nontrivial amount of the energy of the noisy forcing profile gets transferred to flow
structures at frequency ω/2, and we therefore observe vortex pairing.

In order to better understand how the sensitivity of the flow varies as a function of the Reynolds
number, it is instructive to look at the so-called input modes (i.e., the first right singular vector) of the
harmonic transfer function and of the mean-based transfer function. These are shown in Figs. 7 and
8 for Reynolds numbers Re = 500 and Re = 1250, respectively. In particular, in the left-hand-side
panels we show the vorticity fields from the entries ω/2, 3ω/2, and 5ω/2 entries of the first input
mode of H̃ (iω/2). On the right-hand-side panels we show the vorticity field from the first right
singular vector of the mean-based transfer functions R̃(iγ ) evaluated at γ = ω/2, 3ω/2, 5ω/2. It
is worth recalling that the structures in the left-hand-side panels (i.e., those associated with the
harmonic transfer function) are spatially and temporally coherent since they are coupled to one
another via the base flow. On the other hand, structures associated with the mean-based transfer
function are temporally decoupled, so their relative magnitude is arbitrary. Comparing these two
sets of figures allows us to draw several conclusions regarding the amplification mechanisms
of the flow under consideration. First, we observe that at low Reynolds numbers, there is no
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substantial qualitative difference between the mean-based and harmonic modes at low frequencies.
This suggests that the amplification mechanisms are primarily driven by self interactions via the
mean flow. This can also be inferred from the cross-frequency plot in Fig. 6(a), where we see
that the input-output dynamics are dominated by self interactions of structures at frequency ω/2.
Conversely, at higher Reynolds numbers, we see that the mean-based and harmonic input structures
are qualitatively different at all frequencies. This is most likely due to the fact that cross-frequency
interactions [see, e.g., Fig. 6(d)] start dominating the input-output dynamics of the flow and the
temporal mean no longer provides qualitatively meaningful information regarding the dynamics of
the flow. It is also useful to observe that as the Reynolds number is increased, the spatial support of
the input modes becomes more concentrated near the shear layer at r = 1/2 and 0 � z � 2.

C. The driving mechanism behind vortex pairing: Case study at Re = 1000 and Re = 1250

In this section we explore the driving mechanism behind vortex pairing, and, in particular,
we show that this nonlinear phenomenon is driven primarily by a linear mechanism. Specifically,
although nearly all perturbations of this flow lead to vortex pairing [11], we show that if one projects
out the component of the forcing aligned with the leading input mode of the harmonic transfer
function at the pairing frequency, then no pairing is observed.

We consider Re = 1000 and Re = 1250, and we let ψ̂ = (. . . , ψ̂(−1+1/2)ω, ψ̂(0+1/2)ω, ψ̂(1+1/2)ω,

. . .) denote the first right singular vector (i.e., the optimal input mode) of the harmonic transfer
function H̃ (iω/2). We remark that, at Re = 1250, the vorticity fields from the Fourier coefficients
ω/2, 3ω/2, and 5ω/2 in ψ̂ are shown in the left-hand side panels of Fig. 8. Similarly, we let ξ̂ω/2

denote the first right singular vector of the mean-based transfer function R̃(iω/2). The vorticity
field corresponding to this mode at Re = 1250 is shown in the top right panel of Fig. 8. We now
demonstrate that, for this flow, the spatiotemporal signal defined by ψ̂ drives the vortex-pairing
mechanism. In order to do so, we perform two numerical experiments at each Reynolds number:

(1) In the first numerical experiment, we first embed ξ̂ω/2 into a vector ξ̂ =
(. . . , 0, ξ̂−ω/2, ξ̂ω/2, 0, . . .) with the same dimension as ψ̂, and we scale ξ̂ so that ‖ξ̂‖E = ε.
Here the subscript E denotes the Euclidean norm, since the weight W is already accounted for in
the definition of R̃ in (37). We then compute the nonlinear forced response of the Navier-Stokes
equation to the forcing input

ξ(t ) =
∑

α∈�ω/2

ξ̂αeiαt = 2 Real(ξ̂ω/2eiωt/2). (39)

(2) In the second numerical experiment, we project out the component of ξ̂ in the direction of ψ̂

according to

ξ̂⊥ = ξ̂ − ψ̂
〈
ξ̂, ψ̂

〉
E , (40)

and then we scale the resulting vector ξ̂⊥ so that ‖ξ̂⊥‖E = ε. Finally, we compute the nonlinear
forced response of the Navier-Stokes equation to the forcing input

ξ⊥(t ) =
∑

α∈�ω/2

ξ̂⊥,αeiαt . (41)

In other words, in the first experiment we compute the nonlinear response of the flow to
a 2T -periodic forcing input that has a nonzero component along the direction ψ̂. It is worth
mentioning that, at both Reynolds numbers, the projection of the unit vector in the direction of
ξ̂ onto ψ̂ is approximately 0.77. In the second experiment we compute the nonlinear response to a
2T -periodic input that has no component along ψ̂. In both cases, the forcing inputs are normalized
to have the same magnitude ε. The nonlinear response is computed by integrating the Navier-Stokes
equations to time t = 40T with initial condition given by the base flow at time t = 0. The results
are shown in Figs. 9(a) and 9(b) for Re = 1000 and ε = 5 × 10−3. Figures 9(c) and 9(d) show the
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FIG. 9. [(a), (b)] The vorticity field from the nonlinear response to inputs (39) and (41), respectively, at time
t = 40T , Re = 1000, and forcing amplitude ε = 5 × 10−3. [(c), (d)] The analog for Re = 1250 and forcing
amplitude ε = 10−3. The colorbar is shown in Fig. 4(a).

analog for Re = 1250 and ε = 10−3. Remarkably, in both cases we see that if the forcing input
has no component along the direction of ψ̂ then no vortex pairing is observed. We must therefore
conclude that vortex pairing is triggered by the component of ξ̂ along the direction of ψ̂. In other
words, the spatiotemporal signal defined by ψ̂ drives the pairing mechanism. The implications of
this result are far-reaching. First and foremost, it means that a fundamentally nonlinear phenomenon
such as vortex pairing is driven by a linear mechanism. Second, vortex pairing is driven by the
exchange of energy between the unsteady structures in the base flow and the perturbations, and a
single input mode seems to be responsible for nearly all the energy exchange. By contrast, if it were
driven solely by the exchange of energy between the perturbations and the temporal mean then the
mean-based input mode ξ̂ would be perfectly aligned with the harmonic input mode ψ̂. Finally,
we wish to stress the fact that this information can be used to develop control strategies. In fact, we
have just demonstrated that if one wished to suppress vortex pairing, then one would have to design
a controller that rejects disturbances that align with ψ̂.

VI. CONCLUSION

We presented an extension of the harmonic resolvent framework to study the dynamics of
subharmonic perturbations about a time-periodic base flow. In particular, by linearizing the Navier-
Stokes equations about a T -periodic base flow and by seeking perturbed solutions with period nT ,
one can define a family of input-output operators H (iγ ) parameterized by a scalar γ ∈ [0, ω/2],
where ω = 2π/T . The operator H (iγ ) is the harmonic resolvent operator over the frequency set
�γ = γ + ω{. . . ,−1, 0, 1, . . .}, and it is closely related to the harmonic transfer function discussed
in [22]. When γ = 0 (i.e., when the perturbations have the same period as the base flow), we
recover the operator discussed in [8] (however, here we have used a slightly different projection
operator). The singular value decomposition of H (iγ ) at different values of γ can be used to study
the input-output properties of the flow in the proximity of the base flow. Moreover, since H (iγ )
accounts for the first-order triadic frequency coupling between the perturbations and the base flow,
it is also possible to study the input-output dynamics of the flow at selected frequencies of interest.
We demonstrated this method on a simple toy model, and then we used it to shed light on the driving
mechanism behind vortex pairing in an incompressible forced axisymmetric jet.
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APPENDIX A: COMPUTING THE VECTORS v̂ AND û

In this Appendix we show how to compute the vectors v̂ and û that define the oblique projection
P̂ in (18). As discussed in Sec. II C, when the base flow Q(t ) and its phase shift Q(t + ε) satisfy
(1), T̂ is singular with its nullspace spanned by the phase shift direction F0(dQ(t )/dt ). However,
truncation errors and numerical errors are likely to perturb this singularity so that, in practice, the
operator T̂ is not singular to machine precision. Here we seek a procedure to calculate v̂ and û that
is independent of the singular/nonsingular nature of the matrix T̂ . The choice of v̂ is very natural:
since we are ultimately interested in removing the direction of phase shift, it is appropriate to simply
define v̂ := F0(dQ(t )/dt ). That is, we let v̂ be the vector containing the Fourier coefficients of the
time derivative of the base flow. When T̂ is exactly singular, v̂ spans the nullspace of T̂ . When T̂ is
not exactly singular due to numerical and truncation errors we have ‖T̂ v̂‖ � 1.

Computing the vector û is slightly more involved. As discussed in Sec. II C, when T̂ is singular
we would like to choose û so that T̂

∗
û = 0. When T̂ is not exactly singular, we seek an appropriate

û such that ‖T̂
∗
û‖ � 1. Both scenarios can be handled by letting û be the solution of the following

optimization problem:

û = arg min
q̂

1
2‖T̂

∗
q̂‖2

s.t. 〈q̂, v̂〉 = 1.

(A1)

The equality constraint is chosen such that û and v̂ can be used to define an oblique projection. It
can be shown that the optimal solution û solves the problem

T̂ T̂
∗
û = λv̂,

û∗v̂ = 1,
(A2)

where λ � 0 is a Lagrange multiplier. In matrix form, we can write the system of equations above
as [

T̂ T̂
∗ −v̂

v̂∗ 0

][
û
λ

]
=

[
0
1

]
. (A3)

Thus, the desired û is obtained by solving (A3). The structure of (A3) is reminiscent of the method
discussed in [26] for the computation of Landau constants. It is instructive to observe that the
augmented matrix in (A3) is invertible even when T̂ is singular with its nullspace spanned by v̂.
It is also reassuring to observe that when T̂ is singular, the optimal solution û lies in the nullspace
of T̂

∗
, and the objective function attains its minimum at zero.

APPENDIX B: COMPUTING WITH THE HARMONIC RESOLVENT H (iγ )

In this Appendix we discuss the efficient computation of the singular value decomposition (SVD)
of the operator H (iγ ) in (19). Computing the SVD of H̃ (iγ ) in (26) can be done in an analogous
fashion. Henceforth, we assume that all the infinite-dimensional linear operators introduced in
Sec. II have been truncated, and they can therefore be understood as matrices. The SVD is computed
using one of the randomized SVD algorithms in [27], and it requires solving linear systems of the
form

(iγ I − T̂	 )q̂ = f̂ , (iγ I − T̂	 )∗ẑ = ĝ, (B1)
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where f̂ , q̂ ∈ 	 := Range(P̂) and ĝ, ẑ ∈ Range(P̂
∗
), and P̂ is defined in (18). It is straightforward

to verify that

T̂	 = T̂ P̂ = P̂T̂ P̂, (B2)

since 	 is an invariant subspace of T̂ . The linear systems in (B1) are not particularly well-suited for
computation since T̂	 is a dense matrix. Instead, we would like to obtain the solutions q̂ and ẑ in
terms of T̂ , which is a very sparse matrix that can be assembled and stored in memory. Substituting
T̂	 = T̂ P̂ in the first linear system (B1), using the fact that P̂ = I on 	, and observing that f̂ = P̂ f̂
(since f̂ ∈ 	), we obtain

(iγ I − T̂ )P̂q̂ = P̂ f̂ . (B3)

In a similar fashion, the second linear system in (B1) can be written in the form

(iγ I − T̂ )∗P̂
∗
ẑ = P̂

∗
ĝ. (B4)

To solve (B3) for q̂ when f̂ is a random vector (as in the randomized SVD algorithm mentioned
above), we proceed as follows:

(1) Compute f̂ 	 = P̂ f̂ . This operation is performed without assembling P̂ explicitly. The action
of P̂ on a vector can be easily obtained using vector-vector products [see definition of P̂ in (18) and
Appendix A].

(2) Solve (iγ I − T̂ )q = f̂ 	 for q. This can be done either iteratively or via direct solution using
an LU decomposition. We recommend the use of MUMPS for large-scale LU decompositions.
When γ = 0 and T̂ is exactly singular, an LU decomposition cannot be performed, but Krylov-based
methods will have no problems finding a solution, since f̂ 	 ∈ 	 ⊆ Range(T̂ ).

(3) Compute q̂ = P̂q. This step is not necessary if (iγ I − T̂ ) is full-rank, since f 	 ∈ 	 so q
must also lie in 	 (since 	 is an invariant subspace of T̂ ). However, it might be useful to perform
this operation anyways, in order to have q̂ ∈ 	 to machine precision. It is important to observe that
this step is necessary if γ = 0 and T̂ is exactly singular, since the solution to (B3) is not unique
and Krylov-based solvers can find one with some component along the nullspace of T̂ (which is
contained in the nullspace of P̂).

Solving (B4) can be done in a similar way.
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