
Data-driven model reduction via non-intrusive optimization of projection1

operators and reduced-order dynamics2

Alberto Padovan∗ , Blaine Vollmer∗ , and Daniel J. Bodony∗3

4

Abstract. Computing reduced-order models using non-intrusive methods is particularly attractive for systems5
that are simulated using black-box solvers. However, obtaining accurate data-driven models can be6
challenging, especially if the underlying systems exhibit large-amplitude transient growth. Although7
these systems may evolve near a low-dimensional subspace that can be easily identified using stan-8
dard techniques such as Proper Orthogonal Decomposition (POD), computing accurate models often9
requires projecting the state onto this subspace via a non-orthogonal projection. While appropriate10
oblique projection operators can be computed using intrusive techniques that leverage the form of11
the underlying governing equations, purely data-driven methods currently tend to achieve dimen-12
sionality reduction via orthogonal projections, and this can lead to models with poor predictive13
accuracy. In this paper, we address this issue by introducing a non-intrusive framework designed14
to simultaneously identify oblique projection operators and reduced-order dynamics. In particu-15
lar, given training trajectories and assuming reduced-order dynamics of polynomial form, we fit a16
reduced-order model by solving an optimization problem over the product manifold of a Grassmann17
manifold, a Stiefel manifold, and several linear spaces (as many as the tensors that define the low-18
order dynamics). Furthermore, we show that the gradient of the cost function with respect to the19
optimization parameters can be conveniently written in closed form, so that there is no need for auto-20
matic differentiation. We compare our formulation with state-of-the-art methods on three examples:21
a three-dimensional system of ordinary differential equations, the complex Ginzburg-Landau (CGL)22
equation, and a two-dimensional lid-driven cavity flow at Reynolds number Re = 8300.23

Key words. Model reduction, Data-driven reduced-order models, Manifold optimization, Operator inference.24

AMS subject classifications. 37M05, 37M10, 37N1025

1. Introduction. Computing reduced-order models (ROMs) of high-dimensional systems26

is often necessary to perform several tasks, including accelerating expensive simulations, de-27

veloping control strategies and solving design optimization problems. Most model reduction28

frameworks share the following key ingredients: a possibly nonlinear map from the high-29

dimensional state space to a low-dimensional space (i.e., an encoder), a possibly nonlinear30

map from the low-dimensional space to the original high-dimensional space (i.e., a decoder),31

and reduced-order dynamics to evolve the reduced-order state. Here, we provide a brief review32

of intrusive and non-intrusive methods where the reduced-order dynamics are continuous in33

time, and where the encoder and decoder define linear projection operators (i.e., the encoder34

and decoder are linear maps and the encoder is a left-inverse of the decoder).35

Perhaps the most well-known reduced-order models that fall within this category are36

the so-called linear-projection Petrov-Galerkin models. These are obtained by (obliquely)37

projecting the full-order dynamics onto a low-dimensional linear subspace. In particular,38

given a decoder ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 and an encoder ΨΨΨ⊺, where ΦΦΦ and ΨΨΨ are tall rectangular matrices39

that define a projection P = ΦΦΦ(ΨΨΨ⊺ΦΦΦ)−1ΨΨΨ⊺, the aforementioned linear subspace is given by40
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2 A. PADOVAN ET AL.

the span of ΦΦΦ, and ΨΨΨ specifies the direction of projection. This is illustrated in figure 1 in [32].41

If ΦΦΦ = ΨΨΨ, then the projection P is orthogonal and the model is known as a Galerkin model.42

In the simplest of cases, a Galerkin model can be obtained by orthogonally projecting the43

dynamics onto the span of the leading Proper Orthogonal Decomposition (POD) modes of44

a representative training data set. This procedure is “weakly” intrusive in the sense that it45

requires access to the governing equations, but not necessarily to the linearization and adjoint46

of the underlying nonlinear dynamics. In the context of fluids, POD-Galerkin models have47

been used extensively for both compressible and incompressible flows [31, 23, 2, 32]. However,48

these models may not perform well in systems that exhibit large-amplitude transient growth.49

Examples of such systems in fluid mechanics include boundary layers, mixing layers, jets and50

high-shear flows in general [8]. The difficulty posed by these systems can often be traced51

back to the non-normal1 nature of the underlying linear dynamics, which demands the use of52

carefully chosen oblique projections. In linear systems, or nonlinear systems that evolve near53

a steady state, this problem can be addressed using methods such as Balanced Truncation [22,54

11, 39] or Balanced POD [30], which produce oblique projection operators and corresponding55

Petrov-Galerkin models by balancing the observability and reachability Gramians associated56

with the underlying linear dynamics. Extensions and variants of Balanced Truncation and57

Balanced POD also exist for quadratic-bilinear systems [4] and for systems that evolve in58

the proximity of time-periodic orbits [38, 20, 27]. Beyond balancing, we find several other59

approaches from linear systems theory, includingH2 andH∞ model reduction, where reduced-60

order models are obtained by minimizing the H2 and H∞ norms of the error between the full-61

order and reduced-order transfer functions [37, 12]. As in the case of balancing, extensions of62

H2-optimal (and quasi-optimal) model reduction were developed for quadratic-bilinar systems63

[3, 5]. For highly nonlinear systems that lie outside the region of applicability of linear64

model reduction methods, one can turn to recently-developed methods such as Trajectory-65

based Optimization of Oblique Projections (TrOOP) [25] and Covariance Balancing Reduction66

using Adjoint Snapshots (COBRAS) [26]. TrOOP identifies optimal oblique projections for67

Petrov-Galerkin modelling by training against trajectories generated by the full-order model,68

while COBRAS identifies oblique projections for model reduction by balancing the state and69

gradient covariances associated with the full-order solution map. We shall see that our non-70

intrusive formulation is closely related to TrOOP, so we will discuss the latter in more detail in71

section 2.5. All these Petrov-Galerkin methods are intrusive: not only do they require access72

to the full-order dynamics, but also to their linearization about steady or time-varying base73

flows and to the adjoint of the linearized dynamics. Thus, they are not easily applicable to74

systems that are simulated using black-box solvers.75

Among existing techniques to obtain data-driven reduced-order models with continuous-76

time dynamics on linear subspaces, the most well-known is perhaps Operator Inference [28, 19].77

Operator Inference fits a model to data by minimizing the difference between (usually polyno-78

mial) reduced-order dynamics and the projection of the time-derivative of the full-order state79

onto a low-dimensional subspace. Usually, this subspace is defined by the span of POD modes,80

1A non-normal linear operator is one whose right eigenvectors are not mutually orthogonal, and, in the
context of fluids, non-normality is due to the presence of the advective transport terms in the Navier-Stokes
equation.
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and the high-dimensional data are projected orthogonally onto it. While Operator Inference81

has been shown to work well for systems that evolve in close proximity of an attractor (see,82

e.g., [29]), it may suffer from the aforementioned drawbacks of orthogonal projections when83

applied to highly non-normal systems evolving far away from an attractor (e.g., during tran-84

sients). This will become apparent in the examples sections. In the interest of completeness,85

it is worth mentioning that the Operator Inference framework is not limited to linear spaces.86

In fact, Operator Inference reduced-order models were recently computed after orthogonally87

projecting the data onto quadratic manifolds [14, 6], and extensions of the Operator Infer-88

ence formulation were developed to preserve the underlying structure or symmetries of the89

full-order model [35, 15, 18]. We conclude our brief review by acknowledging that there exist90

several other non-intrusive model reduction frameworks in the literature (e.g., discrete-time91

formulations such as dynamic mode decomposition (DMD), autoencoders parameterized via92

neural networks, and many others), and we will mention those that are more closely connected93

with our formulation as needed throughout the manuscript.94

In this paper, we introduce a novel non-intrusive framework to address the problems associ-95

ated with orthogonal projections. In particular, given training trajectories from the full-order96

model, we fit an optimal low-order model by simultaneously seeking reduced-order dynamics97

fr and oblique projection operators P defined by a linear encoder ΨΨΨ⊺ and a linear decoder98

ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1. We shall see that the optimization parameters are the subspace V = Range(ΦΦΦ),99

which lives naturally on the Grassmann manifold, the matrix ΨΨΨ, which can be taken to be an100

element of the orthogonal Stiefel manifold, and the parameters that define the reduced-order101

dynamics (e.g., reduced-order tensors if the dynamics are taken to be polynomial). Fur-102

thermore, if we constrain the reduced-order dynamics fr to be of a form that lends itself to103

straightforward differentiation (e.g., polynomial), we show that the gradient of the cost func-104

tion with respect to the optimization parameters can be written in closed form. This is quite105

convenient because it bypasses the need for automatic differentiation and it allows for faster106

training. We test our formulation on three different examples: a simple system governed by107

three ordinary differential equations, the complex Ginzburg-Landau (CGL) equation and the108

two-dimensional incompressible lid-driven cavity flow at Reynolds number Re = 8300. On all109

three examples, we compare our framework with Operator Inference and POD-Galerkin. In110

the first two examples, we also compare with TrOOP, which has been shown to give very accu-111

rate Petrov-Galerkin models in several examples, including highly non-normal and nonlinear112

jets [25, 26]. On all three examples, our models exhibit better performance than Operator113

Inference and POD-Galerkin models, and in the first two examples we obtain models with114

predictive accuracy very close to that of the intrusive TrOOP formulation.115

2. Mathematical formulation. Throughout this section, we consider a general nonlinear116

system with dynamics defined by117

(2.1)

dx

dt
= f(x,u), x(0) = x0

y = h(x)
118

where x ∈ Rn is the state vector, x0 is the initial condition, u ∈ Rm is the control input and119

y ∈ Rp is the measured output. Since our model reduction procedure draws inspiration from120
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the form of Petrov-Galerkin reduced-order models, we begin by providing a brief review of121

the latter. We then introduce our framework in section 2.2.122

2.1. Petrov-Galerkin models. As discussed in the introduction, Petrov-Galerkin reduced-123

order models are a class of models obtained by constraining the full-order dynamics in (2.1)124

to a linear subspace of Rn. While Petrov-Galerkin models can also be obtained via nonlinear125

projection onto curved manifolds [24], here we constrain our attention to the more common126

case of linear projections. Given rank-r matrices ΦΦΦ ∈ Rn×r and ΨΨΨ ∈ Rn×r that define an127

oblique projection P = ΦΦΦ(ΨΨΨ⊺ΦΦΦ)−1ΨΨΨ⊺, the corresponding Petrov-Galerkin model for (2.1) is128

given by129

(2.2)

dx̂

dt
= Pf (Px̂,u) , x̂(0) = Px0

ŷ = h (Px̂) ,
130

where x̂ lies in the range of P for all times. In the special case of ΨΨΨ = ΦΦΦ, the projection P is131

orthogonal and the model (2.2) is referred to as a Galerkin model. While the state x̂ ∈ Rn132

is an n-dimensional vector (i.e., the same size of the original state x), the dynamics (2.2) can133

be realized by an equivalent r-dimensional system134

(2.3)

dẑ

dt
=ΨΨΨ⊺f

(
ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ,u

)
, ẑ(0) = ΨΨΨ⊺x0

ŷ = h
(
ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ

)135

where the state vector ẑ =ΨΨΨ⊺x̂ has dimension r. The primary challenge associated with com-136

puting accurate projection-based reduced-order models lies in identifying matrices ΦΦΦ and ΨΨΨ137

that define appropriate projections P. While there exist several methods to address this chal-138

lenge, these are often intrusive in the sense that they require access to the linearization of (2.1)139

and its adjoint [30, 25, 26]. In the next section, we present a non-intrusive model reduction140

formulation by allowing for the reduced-order dynamics to be independent of the full-order141

right-hand side f .142

2.2. Non-intrusive optimization of projection operators and reduced-order dynamics.143

Here, we consider reduced-order models of the form144

(2.4) G(ΦΦΦ,ΨΨΨ, f̂r) =


dẑ

dt
= fr (ẑ,u) , ẑ(0) = ΨΨΨ⊺x0

ŷ = h
(
ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ

)145

It is instructive to observe that if fr(ẑ,u) = ΨΨΨ⊺f
(
ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ,u

)
then (2.4) is the exact146

analog of the Petrov-Galerkin reduced-order model in (2.3). Instead, we let fr be a general147

function of the reduced-order state ẑ and of the input u. So, while Petrov-Galerkin models148

are fully defined by (the span of) the matrices ΦΦΦ and ΨΨΨ that define a projection onto a149

low-dimensional subspace, here we have additional degrees of freedom in the choice of the150

reduced-order dynamics. We shall see momentarily that this additional freedom allows us to151

proceed non-intrusively.152
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Within our framework, we seek reduced-order models of the form of (2.4) by minimizing153

the error between ground-truth observations y coming from (2.1) and the predicted observa-154

tions ŷ given by (2.4). In order to convert this task into an appropriate optimization problem,155

it is useful to first identify the symmetries and constraints that are present in (2.4). We156

begin by observing that the system G in (2.4) is invariant with respect to a rotation and157

scaling of the basis matrix ΦΦΦ. In fact, G(ΦΦΦR,ΨΨΨ, fr) = G(ΦΦΦ,ΨΨΨ, fr) for any invertible matrix R158

of size r × r. It follows that the reduced-order system defined by (2.4) is a function of the159

r-dimensional subspace V = Range(ΦΦΦ), rather than of the matrix representative ΦΦΦ itself. In160

the mathematical statement of the problem we will make use of this symmetry and leverage161

the fact that r-dimensional subspaces of Rn are elements of the Grassmann manifold Gn,r. An162

analogous type of symmetry does not hold for ΨΨΨ. In fact, it can be easily verified that there163

exist invertible matrices S such that G(ΦΦΦ,ΨΨΨS, fr) ̸= G(ΦΦΦ,ΨΨΨ, fr). While (2.4) does not enjoy164

any ΨΨΨ-symmetries, we still require ΨΨΨ to have full column rank (otherwise the product ΨΨΨ⊺ΦΦΦ165

would be rank deficient). It is therefore natural to constrain ΨΨΨ to the Stiefel manifold Sn,r of166

orthonormal (and, hence, full-rank) n× r matrices. Finally, in order to write an optimization167

problem where the gradient of the cost function with respect to all the parameters can be168

obtained in closed form, it is convenient to constrain the reduced-order dynamics fr to a form169

that lends itself to straightforward differentiation. Throughout this paper, we will let fr be a170

polynomial function of the reduced-order state ẑ and of the input u as follows171

(2.5) fr = Arẑ+Bru+Hr : ẑẑ
⊺︸ ︷︷ ︸

:=fr

+Lr : ẑu
⊺ + . . . .172

Here, capital letters denote reduced-order tensors that lie naturally on linear manifolds of173

appropriate dimension (e.g., Ar ∈ Rr×r, Br ∈ Rr×m and Hr ∈ Rr×r×r). In the interest of a174

more concise description of the mathematical formulation, we take fr = f r (see definition of f r175

in the underbrace of equation (2.5)). Higher-order polynomial dynamics can be considered176

with minimal modification.177

We are now ready to state the optimization problem that will give us an optimal reduced-178

order model of the form of (2.4). Given outputs y(ti) sampled at times ti along a trajectory179

generated from the full-order system (2.1), we seek a solution to180

(2.6)

min
(V,ΨΨΨ,Ar,Hr,Br)∈M

J =
N−1∑
i=0

∥y(ti)− ŷ(ti)∥2

subject to:
dẑ

dt
= f r(ẑ,u), ẑ(t0) = ΨΨΨ⊺x(t0)

ŷ = h
(
ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ

)
V = Range (ΦΦΦ)

181

where M = Gn,r × Sn,r × Rr×r × Rr×r×r × Rr×m is the product manifold that defines our182

optimization domain.183

2.3. Gradient-based optimization onM. In order to solve the optimization problem (2.6)184

using a gradient-based algorithm, it is convenient to viewM as a submanifold of an ambient-185
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6 A. PADOVAN ET AL.

space manifold M endowed with a Riemannian metric. We first define M for our specific186

case, then we discuss the Riemannian metric.187

Since M is a product manifold whose topology is the product topology of its individual188

components, the ambient-space manifold M can also be defined component-wise. Follow-189

ing [1], we view the Stiefel manifold as an embedded submanifold of the vector space Rn×r,190

and the Grassmann manifold Gn,r as a quotient manifold of the non-orthogonal Stiefel mani-191

fold Rn×r
∗ (which is the manifold of rank-r, but non necessarily orthonormal, matrices of size192

n × r). The manifolds Rr×r, Rr×r×r and Rr×m are vector spaces that do not require any193

special treatment, soM may finally be defined as194

(2.7) M = Rn×r
∗ × Rn×r × Rr×r × Rr×r×r × Rr×m.195

196

In order to define the gradient of the cost function with respect to the parameters, we now197

endow the ambient-space manifold with a Riemannian metric, which will then be inherited198

by the optimization manifold M. Formally, a Riemannian metric gM is a smooth family of199

inner products gMp defined on the tangent spaces of the manifoldM,200

(2.8) gMp : TpM×TpM→ R,201

where TpM denotes the tangent space ofM at a point p ∈M [1]. The gradient ξ of the cost202

function at p ∈M is then defined as the element of the tangent space TpM that satisfies203

(2.9) DJ [η] = gMp (ξ, η) , ∀η ∈ TM
p ,204

where DJ [η] is the directional derivative. A metric for a product manifold can be defined as205

the sum of the component metrics, so we can proceed component-wise as before. The metric206

for the Stiefel manifold Sn,r can be defined as207

(2.10) g
Sn,r

ΨΨΨ (ξ, η) = Tr (ξ⊺η) , ξ, η ∈ TΨΨΨSn,r,208

which is the Euclidean metric inherited from the ambient space Rn×r [1] and Tr denotes209

the trace. A metric for the Grassmann manifold can be defined analogously, albeit paying210

attention to the fact that the Grassmannian is an abstract manifold with non-unique matrix211

representatives. In particular, given the ambient space metric212

(2.11) gR
n×r
∗

ΦΦΦ (ξ, η) = Tr
(
(ΦΦΦ⊺ΦΦΦ)−1 ξ⊺η

)
, ξ, η ∈ TΦΦΦRn×r

∗213

we let the metric on Gn,r be defined as214

(2.12) g
Gn,r

V (ξ, η) = gR
n×r
∗

ΦΦΦ

(
ξΦΦΦ, ηΦΦΦ

)
, ξ, η ∈ TV , Range (ΦΦΦ) = V.215

It is worth observing that (2.12) is not yet suited for computation, since there exists an infinite216

number of elements ξΦΦΦ and ηΦΦΦ of TΦΦΦRn×r
∗ that satisfy the equality. The ambiguity is resolved217

by requiring ξΦΦΦ and ηΦΦΦ to lie on the horizontal space, which is a subspace of TΦΦΦRn×r
∗ where218

one may identify unique ξΦΦΦ and ηΦΦΦ that satisfy (2.12). This unique vector ξξξΦΦΦ is known as219
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the horizontal lift of ξξξ at ΦΦΦ. A rigorous characterization of the horizontal space is provided220

in chapter 3 of [1], and the specific case of the Grassmann manifold is considered in example221

3.6.4 in the same reference. Finally, for the linear manifolds in the Cartesian product ofM,222

we adopt the Euclidean metric (i.e., the usual tensor dot product).223

Now that we have defined the ambient-space manifold M and metrics on M, we can224

approach the computation of the gradient of the cost function in terms of ambient-space225

matrix-valued objects, rather than abstract elements of the optimization manifold M. In226

order to do so, we invoke the “canonical projection”[1]227

(2.13) π : M̃ →M : (ΦΦΦ,ΨΨΨ,Ar,Hr,Br) 7→ (Range (ΦΦΦ) ,ΨΨΨ,Ar,Hr,Br) ,228

where M̃ = Rn×r
∗ ×Stn,r×Rr×r×Rr×r×r×Rr×m. Then, given our cost function J :M→ R,229

for any point (V,ΨΨΨ,Ar,Hr,Br) ∈M we have230

(2.14) J(V,ΨΨΨ,Ar,Hr,Br) = J (π (ΦΦΦ,ΨΨΨ,Ar,Hr,Br)) = J (ΦΦΦ,ΨΨΨ,Ar,Hr,Br) ,231

where (ΦΦΦ,ΨΨΨ,Ar,Hr,Br) ∈ M̃ and V = Range(ΦΦΦ). If we view J :M→ R as a function that232

sends elements of the ambient space to the reals, then equation (2.14) implies that J onM is233

equal to the restriction of J to M̃. This restriction ensures that the second argument of J is234

an element of the Stiefel manifold (as opposed to a generic element of Rn×r). We henceforth235

refer to J as the ambient-space cost function. It follows from standard results (see equations236

(3.37) and (3.39) in [1]) that237

(2.15)
(
∇V JΦΦΦ,∇ΨΨΨJ,∇ArJ,∇HrJ,∇BrJ

)
=

(
∇ΦΦΦJ,PΨΨΨ∇ΨΨΨJ,∇ArJ,∇HrJ,∇BrJ

)
,238

where the gradient of J is evaluated at (ΦΦΦ,ΨΨΨ,Ar,Hr,Br) ∈ M̃, and the gradient of J is239

evaluated at (V,ΨΨΨ,Ar,Hr,Br) ∈M with V = Range(ΦΦΦ). Here, ∇V JΦΦΦ denotes the horizontal240

lift of ∇V J at ΦΦΦ, PΨΨΨ denotes the projection onto the tangent space of Stn,r at ΨΨΨ (see example241

3.6.2 in [1]) and we remark that ∇ΨΨΨJ is an element of the tangent space of Rn×r at ΨΨΨ. In242

summary, the equation above states that the gradient of the cost function with respect to the243

abstract optimization parameters can be computed in terms of the gradient of the ambient-244

space cost function. Conveniently, our model reduction formulation allows for the ambient-245

space gradient to be computed in closed form, and this result is stated in the proposition below.246

Importantly, we shall see that the computation of the gradient does not require querying247

the full-order model (2.1). That is, the gradient can be computed non-intrusively. Once the248

ambient-space gradient is available, the gradient with respect to the optimization parameters is249

computed using (2.15) by libraries such as Pymanopt [36] in Python or Manopt [7] in MATLAB.250

Proposition 2.1 (Ambient-space gradient). Let problem (2.6) be written as an equivalent251

unconstrained optimization problem with ambient-space Lagrangian L :M→ R defined as252

(2.16)

L(ΦΦΦ,ΨΨΨ,Ar,Hr,Br) =
N−1∑
i=0

{
J i +

∫ ti

t0

λλλ⊺
i

(
dẑ

dt
−Arẑ−Hr : ẑẑ

⊺ −Bru

)
dt

+ λλλi(t0)
⊺
(
ẑ(t0)−ΨΨΨ

⊺
x(t0)

)}
,

253

To appear in SIAM J. on Applied Dynamical Systems
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where J i =
∥∥y(ti)−h(

ΦΦΦ
(
ΨΨΨ

⊺
ΦΦΦ
)−1

ẑ(ti)

)∥∥2 and λλλi(t) ∈ Rr with t ∈ [t0, ti] is the ith Lagrange254

multiplier. Defining e(ti) := y(ti)−h

(
ΦΦΦ
(
ΨΨΨ

⊺
ΦΦΦ
)−1

ẑ(ti)

)
and Cj,k := ∂hj/∂xk, the gradients255

of the ambient-space Lagrangian with respect to its parameters are given below,256

∇ΦΦΦL =

{
− 2

N−1∑
i=0

(
I−ΨΨΨ

(
ΦΦΦ⊺ΨΨΨ

)−1
ΦΦΦ⊺

)
C(ti)

⊺e(ti)ẑ(ti)
⊺
(
ΨΨΨ

⊺
ΦΦΦ
)−1

}
(ΦΦΦ⊺ΦΦΦ)(2.17)257

∇ΨΨΨL =

N−1∑
i=0

(
2ΦΦΦ

(
ΨΨΨ

⊺
ΦΦΦ
)−1

ẑ(ti)e(ti)
⊺C(ti)ΦΦΦ

(
ΨΨΨ

⊺
ΦΦΦ
)−1
− x(t0)λλλi(t0)

⊺
)

(2.18)258

∇ArL = −
N−1∑
i=0

∫ ti

t0

λλλiẑ
⊺ dt(2.19)259

∇HrL = −
N−1∑
i=0

∫ ti

t0

λλλi ⊗ ẑ⊗ ẑ dt(2.20)260

∇BrL = −
N−1∑
i=0

∫ ti

t0

λλλiu
⊺ dt,(2.21)261

where the Lagrange multiplier λλλi(t) satisfies the reduced-order adjoint equation262

(2.22) −dλλλi

dt
=

[
∂ẑf r(ẑ)

]⊺
λλλi, λλλi(ti) = 2

(
ΦΦΦ⊺ΨΨΨ

)−1
ΦΦΦ⊺C(ti)

⊺e(ti), t ∈ [t0, ti].263

Proof. The proof relies on calculus of variations. At a local minimum p ∈M, the following264

must hold for every vector ξ ∈ TpM,265

(2.23) gMp
(
∇pL, ξ

)
= DpL[ξ] = ∂pL[ξ] + ∂ẑL ·Dpẑ[ξ] +

N−1∑
i=0

(
∂λλλi

L ·Dpλλλi[ξ]
)
= 0,266

where gMp denotes the ambient-space metric onM at p (which we have defined component-267

wise earlier in section 2.3). By enforcing ∂ẑL[ηηη] = 0 for all ηηη, the equality above reduces to268

269

(2.24) gMp
(
∇pL, ξ

)
= ∂pL[ξ] = 0,270

since ∂λλλi
L = 0 for all i by virtue of the fact that λλλi is a Lagrange multiplier. We begin by271

showing that the reduced-order adjoint equation (2.22) enforces ∂ẑL[ηηη] = 0 for all ηηη. Given272

the ambient-space Lagrangian L, we have273

(2.25)

∂ẑL[ηηη] =
N−1∑
i=0

{
− 2e(ti)

⊺C(ti)ΦΦΦ
(
ΨΨΨ

⊺
ΦΦΦ
)−1

ηηη(ti) + λλλ⊺
iηηη

∣∣∣∣ti
t0

−
∫ ti

t0

(
dλλλ⊺

i

dt
+ λλλ⊺

i

[
∂ẑf r(ẑ)

])
ηηη dt

+ λλλi(t0)
⊺ηηη(t0)

}
= 0,

274
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where we have used integration by parts on the time-derivative term. For each i > 0, the275

terms λλλi(t0)
⊺ηηη(t0) cancel out and the summand vanishes thanks to equation (2.22). Similarly,276

when i = 0, the second and third terms in the sum vanish and the summand is equal to zero277

for λλλ0(t0) = 2
(
ΦΦΦ⊺ΨΨΨ

)−1
ΦΦΦ⊺C(t0)

⊺e(t0). We now derive the gradient of L with respect to ΦΦΦ.278

The partial derivative of L with respect to ΦΦΦ in the direction of ξξξ is given by279

(2.26) ∂ΦΦΦL[ξξξ] = −2
N−1∑
i=0

e(ti)
⊺C(ti)

(
ξξξ
(
ΨΨΨ

⊺
ΦΦΦ
)−1
−ΦΦΦ

(
ΨΨΨ

⊺
ΦΦΦ
)−1

ΨΨΨ
⊺
ξξξ
(
ΨΨΨ

⊺
ΦΦΦ
)−1

)
ẑ(ti),280

where we have used the identity DΦΦΦ

(
ΨΨΨ

⊺
ΦΦΦ
)−1

[ξξξ] = −
(
ΨΨΨ

⊺
ΦΦΦ
)−1

ΨΨΨ
⊺
ξξξ
(
ΨΨΨ

⊺
ΦΦΦ
)−1

. Using (2.24),281

and recalling the definition of the ambient-space metric on Rn×r
∗ (2.11), we recover the gradient282

in (2.17). The other gradients can be obtained similarly and the proof is concluded.283

Another ingredient that is necessary for gradient-based manifold optimization is the con-284

cept of a retraction. This is a map Rp : TpM →M that satisfies Rp(0) = p and DRp(0) =285

ITpM, where ITpM is the identity map on the tangent space TpM [1]. The use of this map286

allows us to generalize the concept of moving in the direction of the gradient on a nonlinear287

manifold: for instance, given a point p ∈M and the gradient ξ ∈ TpM of a function f defined288

onM, the next iterate in the direction of the gradient is given by Rp(p− αξ) ∈M, where α289

is some learning rate. In other words, the retraction allows us to guarantee that all iterates290

generated by a gradient flow lie on the manifold. Valid retractions for both the Stiefel and291

Grassmann manifolds are given by the QR decomposition (see examples 4.1.3 and 4.1.5 in292

[1]), while for linear manifolds the retraction is simply the identity map. Lastly, we point out293

that second-order gradient-based algorithms (e.g., conjugate gradient) require the concept of294

vector transport. This is described thoroughly in section 8.1 of [1]. Gradient-based algorithms295

on nonlinear manifolds are well-understood and readily available in libraries such as Pymanopt296

[36] and Manopt [7]. Metrics, retractions and vector transports are conveniently handled by297

these packages, and a user simply needs to provide routines to evaluate the cost function and298

the ambient-space gradient provided in Proposition 2.1.299

2.4. Computational considerations. In this subsection, we discuss the efficient computa-300

tion of the ambient-space gradient presented in Proposition 2.1. We then provide an algorithm301

and and estimate of the computational cost.302

In order to efficiently calculate the gradient, it is useful to manipulate the expressions303

in (2.19)-(2.21) into a form that is more suitable for computation. In particular, since the304

integrands in (2.19)-(2.21) are linear in λλλi, we can write, e.g.,305

(2.27)

N−1∑
i=0

∫ ti

t0

λλλi(t)ẑ(t)
⊺ dt =

N−1∑
i=1

∫ ti

ti−1

ξξξi(t)ẑ(t)
⊺ dt, ξξξi(t) =

N−1∑
j=i

λλλj(t),306

where ξξξi(t) may be understood as a cumulative adjoint variable that can be computed by307

time-stepping the adjoint equation (2.22) backward in time from tN−1 to t0. Then, according308

to the equation above, the gradients in (2.19)-(2.21) can be conveniently computed as a sum of309

integrals over short temporal intervals [ti−1, ti], as opposed to a sum of integrals over temporal310
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intervals of increasing length [t0, ti]. Having defined ξξξi(t), the term
∑N−1

i=0 x(t0)λλλi(t0)
⊺ =311

x(t0)ξξξ0(t0)
⊺ in equation (2.18) can also be evaluated efficiently. These details are illustrated312

in Algorithm 2.1.313

Algorithm 2.1 Compute ambient-space gradient in Proposition 2.1

Input: Training data {y(ti)}N−1
i=0 , initial condition x(0) of the full-order model, input u(t)

and a point (V,ΨΨΨ,Ar,Hr,Br) ∈ M, with some matrix representative ΦΦΦ such that
Range(ΦΦΦ) = V .

Output: Ambient-space gradients (2.17)-(2.21) in Proposition 2.1

1: Initialize arrays to store ∇ΦΦΦL, ∇ΨΨΨL, ∇ArL, ∇HrL and ∇BrL
2: Compute the ROM solution ẑ(t) with initial condition ΨΨΨ⊺x(0) and external input u(t)
3: Store values ẑ(ti) (with i ∈ {0, 1, . . . , N − 1}), then compute e(ti) and C(ti) defined in

Proposition 2.1
4: for i ∈ {N − 1, N − 2, . . . , 1} do
5: Update ∇ΦΦΦL← ∇ΦΦΦL− 2

(
I−ΨΨΨ(ΦΦΦ⊺ΨΨΨ)−1ΦΦΦ⊺

)
C(ti)

⊺e(ti)ẑ(ti)
⊺ (ΨΨΨ⊺ΦΦΦ)−1 (ΦΦΦ⊺ΦΦΦ)

6: Update ∇ΨΨΨL← ∇ΨΨΨL+ 2ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ(ti)e(ti)
⊺C(ti)ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1

7: Compute ξξξi(t) (see (2.27)) for t ∈ [ti−1, ti] by integrating the adjoint equation (2.22)
backward in time with final condition ξξξi(ti) = ξξξi+1(ti) + 2 (ΦΦΦ⊺ΨΨΨ)−1ΦΦΦ⊺C(ti)

⊺e(ti)

8: Update ∇ArL← ∇ArL−
∫ ti
ti−1

ξξξi(t)ẑ(t)
⊺ dt using, e.g., Gaussian quadrature

9: Update ∇HrL← ∇HrL−
∫ ti
ti−1

ξξξi(t)⊗ ẑ(t)⊗ ẑ(t) dt

10: Update ∇BrL← ∇BrL−
∫ ti
ti−1

ξξξi(t)u(t)
⊺ dt

11: end for
12: Set ξξξ0(t0)← ξξξ1(t0) + 2 (ΦΦΦ⊺ΨΨΨ)−1ΦΦΦ⊺C(t0)

⊺e(t0)

13: Update ∇ΦΦΦL← ∇ΦΦΦL− 2
(
I−ΨΨΨ(ΦΦΦ⊺ΨΨΨ)−1ΦΦΦ⊺

)
C(t0)

⊺e(t0)ẑ(t0)
⊺ (ΨΨΨ⊺ΦΦΦ)−1

14: Update ∇ΨΨΨL← ∇ΨΨΨL+ 2ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ(t0)e(t0)
⊺C(t0)

⊺ΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 − x(t0)ξξξ0(t0)
⊺

As far as computational cost is concerned, the algorithm scales with the number of snap-314

shots N along a training trajectory, the ROM dimension r, the polynomial order of the ROM315

dynamics p, the size of the full-order state n, the number of time steps nt to integrate the316

ROM from time ti to ti+1, and the number of quadrature points nq used to estimate the317

temporal integrals. Given the presence of a for loop with N − 1 iterations (line 4 in the318

algorithm), the overall cost of is O(Nc), where c is the cost associated with each for loop319

iteration i. The major contributors to the latter are the presence of matrix-vector products320

involving ΦΦΦ and ΨΨΨ (which we recall being matrices of size n × r), the need to integrate the321

reduced-order adjoint dynamics backward in time (line 7 in the algorithm), and the evaluation322

of the integrals involving r−dimensional tensor products (see, e.g., line 9). The cost of matrix-323

vector products involving ΦΦΦ and ΨΨΨ is O(nr), the cost associated with integrating the adjoint324

equations is O(ntr
p+1), where nt is the number of time steps taken from ti to ti+1, and the325

evaluation of the integrals scales as O(nqr
p+1), where nq is the number of quadrature points.326

Usually, nq ≪ nt (this is the case if we use high-order Gaussian quadrature), so an estimate327

of the cost per for-loop iteration is given by O(nr + ntr
p+1). In very high-dimensional sys-328
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tems where n is larger than O(ntr
p), the cost per iteration is dominated by the matrix-vector329

products involving ΦΦΦ and ΨΨΨ, otherwise it is dominated by the ROM time stepper.330

2.5. Connection with existing methods. While our model reduction framework shares331

similarities with several existing methods, we would like to emphasize a natural connection332

with the recently-developed Trajectory-based Optimization for Oblique Projections (TrOOP)333

[25] and the Operator Inference framework introduced in [28].334

TrOOP is a model reduction framework whereby a Petrov-Galerkin reduced-order model335

of the form (2.2) is obtained by optimizing the projection operator P against trajectories of the336

full-order model (2.1). More specifically, given r-dimensional subspaces V = Range(ΦΦΦ) and337

W = Range(ΨΨΨ), TrOOP seeks an optimal P by solving the following optimization problem338

(2.28) min
(V,W )∈MTrOOP

JTrOOP =
N−1∑
i=0

∥y(ti)− ŷ(ti)∥2339

subject to (2.2) (or, equivalently, to (2.3)), where MTrOOP = Gn,r × Gn,r is the product of340

two Grassmann manifolds. While the cost function (2.28) is the same as the one in (2.6),341

solving the optimization problem (2.28) is intrusive because TrOOP constrains the reduced-342

order dynamics to be the Petrov-Galerkin projection of the full-order dynamics. Consequently,343

computing the gradient of the cost function JTrOOP with respect to the parameters requires344

differentiating through the dynamics f in (2.1). This can be seen by deriving the gradient in a345

way analogous to that of Proposition 2.1, or alternatively, following Proposition 4.3 in [25]. As346

previously discussed, not all black box solvers allow for easy differentiation of the governing347

equations so, for this reason, solving the TrOOP optimization problem can be infeasible in348

some applications.349

Operator Inference, on the other hand, is a non-intrusive model reduction framework350

that seeks a reduced-order model by orthogonally projecting the data onto a low-dimensional351

subspace and then fitting the reduced-order dynamics. This subspace is typically chosen as352

the span of the leading Proper Orthogonal Decomposition (POD) modes associated with some353

representative data set generated from (2.1). In particular, given a full-order trajectory x(ti)354

sampled from (2.1) at times ti, the time-derivative dx(ti)/dt, the input u(ti), a r-dimensional355

subspace spanned by ΦΦΦ ∈ Rn×r, and some parameterization of the reduced-order dynamics356

(e.g., fr = Arẑ+Hr : ẑẑ
⊺ +Bru), Operator Inference solves357

(2.29) min
(Ar,Hr,Br)∈MOpInf

JOpInf =
N−1∑
i=0

∥∥∥∥dẑ(ti)dt
−Arẑ(ti)−Hr : ẑ(ti)ẑ(ti)

⊺ −Bru(ti)

∥∥∥∥2,358

where ẑ(ti) = ΦΦΦ⊺x(ti) and MOpInf = Rr×r × Rr×r×r × Rr×m. As observed in [28], equa-359

tion (2.29) can be conveniently written as a linear least-squares problem whose solution is360

obtained via the Moore-Penrose inverse rather than via iterative gradient-based algorithms.361

Furthermore, given the least-squares nature of the problem, it is straightforward to add reg-362

ularization (e.g., to promote stability and/or avoid overfitting) by penalizing the Frobenius363

norm of the parameters [21, 34]. While Operator Inference offers a convenient non-intrusive364

model reduction platform, it may suffer from the fact that it maps the high-dimensional data365
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onto a low-dimensional space via orthogonal projection. We shall see that this can lead to366

inaccurate models if the full-order dynamics exhibit transient growth (e.g., due to non-normal367

mechanisms).368

It is now clear that our model reduction framework merges concepts from both TrOOP369

and Operator Inference. Specifically: TrOOP seeks optimal projections while constraining370

the reduced-order dynamics to be of Petrov-Galerkin form, Operator Inference seeks optimal371

reduced-order dynamics while constraining the projection operator to be orthogonal and onto372

the span of POD modes, and our formulation simultaneously seeks optimal projections and373

optimal reduced-order dynamics. Moving forward, we call our formulation “Non-intrusive374

Trajectory-based optimization of Reduced-Order Models” (NiTROM). In closing this section,375

it is also worth mentioning that NiTROM solves an optimization problem similar in spirit376

to the one in “low-rank dynamic mode decomposition” [33], where the encoder and decoder377

are taken to be elements of the Grassmann manifold, and the reduced-order dynamics are378

assumed to be linear and discrete in time. Furthermore, by viewing the projection operator as379

a linear autoencoder, we can find several connections between NiTROM and existing intrusive380

and non-intrusive model reduction formulations that rely on (usually nonlinear) autoencoders381

parameterized by neural networks. Recent examples may be found in [13, 10, 24], although,382

to the best of our understanding, the only autoencoder architecture that defines a nonlinear383

projection onto a curved manifold is presented in [24].384

3. Application to a toy model. In this section, we apply NiTROM to a three-dimensional385

toy model, and we compare with the intrusive TrOOP and POD Galerkin formulations and386

the non-intrusive Operator Inference. The model is governed by the following equations387

ẋ1 = −x1 + νx1x3 + u(3.1)388

ẋ2 = −2x2 + νx2x3 + u(3.2)389

ẋ3 = −5x3 + u(3.3)390

y = x1 + x2 + x3,(3.4)391

where ẋ1 = dx1/dt and ν is a parameter. If ν is small, then these dynamics are effectively392

linear and governed by a normal (in fact, diagonal) linear operator. Conversely, if ν is large,393

the dynamics become particularly tedious [25, 26]: not only are they more heavily nonlinear,394

but the nonlinearity is such that the rapidly-decaying state x3 has a large impact on the395

remaining states. Systems where low-energy (or rapidly-decaying) states have a large impact396

on the remaining states are precisely those where ROMs obtained via orthogonal projection397

are more likely to give inaccurate predictions. In order to demonstrate this phenomenon, we398

consider two separate cases, ν = 5 and ν = 20, and we seek two-dimensional ROMs capable of399

predicting the time history of the measured output y in response to step inputs u(t) = γH(t),400

where H(t) is the Heaviside step function centered at t = 0, and γ ∈ (0, 1/4). Given the401

quadratic nature of the full-order dynamics, we seek quadratic ROMs of the form402

dẑ

dt
= Arẑ+Hr : ẑẑ

⊺ +ΨΨΨ⊺u(3.5)403

ŷ = CΦΦΦ (ΨΨΨ⊺ΦΦΦ)−1 ẑ,(3.6)404
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where C = [1 1 1] is a row vector and u = (u, u, u).405

For both cases, ν = 5 and ν = 20, we train the models as follows. We collect y(t) from406

Ntraj = 4 step responses generated with γ ∈ {0.01, 0.1, 0.2, 0.248} and initialized from rest.407

For each trajectory, we sample y at N = 20 equally-spaced times ti ∈ [0, 10]. The cost function408

for NiTROM and TrOOP is409

(3.7) J =

Ntraj−1∑
j=0

1

αj

N−1∑
i=0

∥y(j)(ti)− ŷ(j)(ti)∥2,410

with αj = NtrajN∥Cx(j)∥2, where x(j) is the exact steady state that arises in response to the411

step input magnitude γ(j). (The steady state is computed analytically for simplicity, but it412

could just as easily have been computed via time-stepping since all steady states considered413

herein are linearly stable.) For both methods, the optimization was performed using the con-414

jugate gradient algorithm available in Pymanopt [36], with the ambient-space gradient defined415

following Proposition 2.1. Both methods were initialized with ΨΨΨ = ΦΦΦ given by the leading416

two POD modes computed from the four training step responses. Additionally, NiTROM was417

provided with initial reduced-order tensors computed via Galerkin projection of the full-order418

dynamics onto the POD modes. The cost function for Operator Inference is419

(3.8)
JOpInf =

Ntraj−1∑
j=0

1

αj

N−1∑
i=0

∥∥∥∥dẑ(j)(ti)dt
−Arẑ

(j)(ti)−Hr : ẑ
(j)(ti)ẑ

(j)(ti)
⊺ −ΦΦΦ⊺u(j)(ti)

∥∥∥∥2
+ λ∥Mat(Hr)∥2F ,

420

where ΦΦΦ are the POD modes that we just described, ẑ = ΦΦΦ⊺x, Mat (Hr) denotes the matri-421

cization of the third-order tensor Hr and λ is the regularization parameter. In both cases422

(ν = 5 and ν = 20) λ ≈ 10−7, and the chosen λ is (approximately) the one that yields the423

best possible Operator Inference model, as measured by the cost function J in (3.7). Also, it424

is worth mentioning that the time-derivative of the reduced-order state dẑ(ti)/dt is computed425

exactly. That is, dẑ(ti)/dt = ΦΦΦ⊺f(x(ti)), where f denotes the right-hand side of the full-order426

dynamics and x(ti) is the training full-order snapshot whose POD coefficients are ẑ(ti).427

The models were tested by generating 100 step-response trajectories with γ sampled uni-428

formly at random from the interval (0, 1/4). The results are shown in figure 1a for both values429

of ν, where the average error over trajectories is defined as430

(3.9) e(t) =
1

Ntraj

Ntraj−1∑
j=0

1

αj
∥y(j)(t)− ŷ(j)(t)∥2,431

with αj as in (3.7). Figure 1a shows that all models are very accurate when ν = 5. This432

is expected, since we have seen that for lower values of ν (and for the moderate step input433

magnitudes we are considering here), the dynamics of the full-order model are effectively linear434

and (more importantly) governed by a normal operator. Therefore, accurate ROMs can be435

obtained via orthogonal projection. The accuracy of all the models can also be appreciated436

in figure 2a, where we see the time history of the output y in response to a sinusoidal input437
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Figure 1: Toy model: (a) average testing error (3.9) for ν = 5 (normal dynamics). (b) Analog
for ν = 20 (non-normal dynamics).
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Figure 2: Toy model: time history of the output y in response to a sinusoidal input
u(t) = 0.45 (sin(t) + cos(2t)) with (a) ν = 5 (normal dynamics) and (b) ν = 20 (non-normal
dynamics). The black continuous line is the ground-truth given by the full-order model. The
rest of the legend is in figure 1.

(recall that we have not trained on sinusoids). By contrast, as we increase ν to 20, we start438

to observe some loss in predictive accuracy, particularly from the models (POD Galerkin and439

Operator Inference) that rely on orthogonal projections. This can be seen in figure 1b, and,440

even more convincingly, in figure 2b. In the latter, we see that while NiTROM and TrOOP441

provide a very good estimate of the output y in response to a sinusoidal input, the POD442

Galerkin and Operator Inference models struggle to do so. This must be attributed to the443

fact that TrOOP and NiTROM identify ROMs via oblique projection, while the other two444

methods use orthogonal projections.445

For completeness, we also show the decay of the loss function versus conjugate gradient446

iterations for both TrOOP and NiTROM in figure 3. In particular, we observe that in both447

cases (ν = 5 and ν = 20), NiTROM attains a lower loss function value than TrOOP. However,448

in the ν = 20 case, TrOOP reaches the stopping criterion ∥∇J∥ ≤ 10−6 much faster than449

NiTROM. Presumably, this is due to the fact that NiTROM’s optimization landscape is “less450
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Figure 3: Toy model: cost function value (3.7) versus conjugate gradient iteration for (a)
ν = 5 and (b) ν = 20.

friendly” than TrOOP’s, as NiTROM admits a larger class of solutions. In fact, while the451

larger number of parameters in NiTROM allows for a wider class of reduced-order models, it452

may also make it more difficult for the optimizer to find a “good” local minimum.453

4. Application to the complex Ginzburg-Landau (CGL) equation. In this section we454

consider the complex Ginzburg-Landau (CGL) equation455

(4.1)
∂q

∂t
=

(
−ν ∂

∂x
+ γ

∂2

∂x2
+ µ

)
q − a|q|2q, x ∈ (−∞,∞) , q(x, t) ∈ C,456

with parameters a = 0.1, γ = 1−i, ν = 2+0.4i and µ =
(
µ0 − 0.22

)
+µ2x

2/2 with µ2 = −0.01457

and µ0 = 0.38. Here, i =
√
−1. For this choice of parameters, the origin q(x, t) = 0 is linearly458

stable, but exhibits significant transient growth due to the non-normal nature of the linear459

dynamics [17]. This type of behavior is common in high-shear flows (e.g., boundary layers,460

mixing layers and jets), making the CGL a meaningful and widely-used benchmark example.461

In this section, we are interested in computing ROMs capable of predicting the input-output462

dynamics of (4.1) in response to spatially-localized inputs. In particular, we wish to predict463

the time history of complex-valued measurements464

(4.2) y = Cq = exp

{
−
(
x+ x

s

)2}
q465

in response to complex-valued inputs u that enter the dynamics according to466

(4.3) Bu = exp

{
−
(
x− x

s

)2}
u.467

Here, s = 1.6 and x = −
√
−2 (µ0 − 0.22) /µ2 is the location of the so-called “branch I” of the468

disturbance-amplification region (see [17] for additional details). Upon spatial discretization469

on a grid with n nodes, equation (4.1) can be written as a real-valued dynamical system with470
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cubic dynamics471

(4.4)

dq

dt
= Aq+H : (q⊗ q⊗ q) +Bu

y = Cq,
472

where the state q ∈ R2n contains the spatially-discretized real and imaginary components473

of q, u ∈ R2 contains the real and imaginary components of the input u and y ∈ R2 contains474

the real and imaginary components of the output y. Thus, given the form of the full-order475

system, we seek cubic reduced-order models with dynamics expressed as the sum of a linear476

term, a cubic term and a linear input term.477

We train our models by simulating the response of (4.4) to impulses478

(4.5) Bu(t) =

{
βBej if t = 0

0 if t ̸= 0
479

where ej ∈ R2 is the unit-norm vector in the standard basis and β ∈ {−1.0, 0.01, 0.1, 1.0}.480

We therefore have a total of Ntraj = 8 training trajectories, and we collect the output y481

at N = 1000 uniformly-spaced time instances ti ∈ [0, 1000]. Since the leading five POD482

modes associated with the training data contain approximately 98% of the variance and are483

sufficient to reconstruct the time history of the output y almost perfectly, we seek models of484

size r = 5. The cost functions for NiTROM, TrOOP and Operator Inference are analogous485

to those considered in section 3, except that the reduced-order dynamics are cubic and the486

normalization constants αj in (3.7) are defined as the time-averaged energy of the output y487

along the jth trajectory. In Operator Inference, the regularization parameter for the reduced-488

order fourth-order tensor was chosen as λ = 109 following the same criterion described in the489

previous section. The NiTROM optimization was initialized with ΦΦΦ = ΨΨΨ given by the first490

five POD modes of the training data and the reduced-order tensors provided by Operator491

Inference. The optimization was conducted using coordinate descent by successively holding492

the reduced-order tensors fixed and allowing for the bases ΦΦΦ and ΨΨΨ to vary, and viceversa. On493

this particular example, we found this procedure to be less prone to getting stuck in “bad”494

local minima. TrOOP, on the other hand, was initialized with ΦΦΦ and ΨΨΨ given by Balanced495

Truncation [22, 30] since the initialization with POD modes led to a rather inaccurate local496

minimum. TrOOP’s optimization was carried out using conjugate gradient.497

We test the performance of our model by generating 50 trajectories in response to inputs498

of the form (4.5) with β drawn uniformly at random from [−1.0, 1.0]. The average error across499

all testing trajectories is shown in figure 4a, while a representative impulse response is shown500

in figure 4b. Overall, we see that both NiTROM and TrOOP achieve very good predictive501

accuracy and are capable of tracking the output through the heavy oscillatory transients. By502

contrast, Operator Inference and the POD-Galerkin model exhibit higher errors, and this is503

most likely due to the highly non-normal nature of the CGL dynamics. In fact, both these504

methods achieve dimensionality reduction by orthogonally projecting the state onto the span505

of POD modes, while, as previously discussed, reduced-order models for non-normal systems506

typically require carefully chosen oblique projections. Finally, we demonstrate the predictive507

accuracy of NiTROM on unseen sinusoidal inputs of the form Bu(t) = 0.05 sin(kωt)Bv/∥Bv∥,508
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Figure 4: CGL: (a) average testing error (analogous to (3.9)). (b) Real part of the output y
from a representative testing impulse response. The black line in panel (b) denotes the ground-
truth response.
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Figure 5: CGL: Real part of the output y in response to a sinusoidal input with frequencies
(a) ω and (b) 2ω, where ω ≈ 0.648 is the fundamental frequency of the system. The black
continuous line indicates the ground truth, and the rest of the legend is in figure 4a.
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Figure 6: CGL: Cost function value versus conjugate gradient iteration for the CGL equation.
TrOOP was initialized using Balanced Truncation, while NiTROM using Operator Inference.

To appear in SIAM J. on Applied Dynamical Systems



18 A. PADOVAN ET AL.

where v ∈ R2 is chosen at random and ω ≈ 0.648 is the natural frequency of the system. The509

results for frequencies ω and 2ω are shown in figure 5, where we see that NiTROM provides an510

accurate estimate of the response of the system at frequency ω and an acceptable prediction511

at frequency 2ω. The reason why the prediction at 2ω for both TrOOP and NiTROM is not512

as clean as the prediction at ω is because the training data exhibited dominant oscillatory513

dynamics at the natural frequency ω and very little contributions from other frequencies.514

Nonetheless, the predictions at 2ω are better than those provided by POD-Galerkin and515

Operator Inference. Before closing this example, we report on the loss function value for both516

TrOOP and NiTROM in figure 6, but we remark that TrOOP was initialized using Balanced517

Truncation, while NiTROM was initialized using Operator Inference.518

5. Application to the lid-driven cavity flow. In this section, we apply our model reduction519

procedure to an incompressible fluid flow inside a lid-driven square cavity. The flow dynamics520

are governed by the incompressible Navier-Stokes equation and by the continuity equation521

∂v

∂t
+ v · ∇v = −∇p+Re−1∇2v(5.1)522

∇ · v = 0,(5.2)523

where v(x, t) = (u(x, t), v(x, t)) is the two-dimensional velocity vector, p(x, t) is the pressure524

and Re is the Reynolds number. Throughout, we consider a two-dimensional spatial domain525

D = [0, 1]× [0, 1] with zero-velocity boundary conditions at all walls, except for u = 1 at the526

top wall. The Reynolds number is held at Re = 8300, where the flow admits a linearly stable527

steady state (shown in figure 7a), but exhibits large amplification and significant transient528

growth due to the non-normal nature of the underlying linear dynamics. The high degree of529

non-normality and consequent transient growth can be appreciated by looking at figure 7b,530

where we show the time history of the energy of several impulse responses. In particular, we531

see that after an initial decay, the energy spikes around t = 5 before decaying back to zero.532

We discretize the governing equations using a second-order finite-volume scheme on a uniform533

fully-staggered grid of size Nx×Ny = 100× 100. With this spatial discretization, no pressure534

boundary conditions need to be imposed. The temporal integration is carried out using the535

second-order fractional step (projection) method introduced in [9]. Our solver was validated536

by reproducing some of the results in [16].537

In this example, we are interested in computing data-driven reduced-order models capable538

of predicting the evolution of the flow in response to spatially-localized inputs that enter the539

x-momentum equation as540

(5.3) B(x, y)w(t) = exp

{
− 5000

(
(x− xc)

2 + (y − yc)
2
)}

w(t),541

with xc = yc = 0.95. Upon spatial discretization and removal of the pressure via projection542

onto the space of divergence-free vector fields, the dynamics are governed by543

(5.4)
d

dt
q = Aq+H : qq⊺ +Bw,544

where q ∈ RN is the spatially-discretized divergence-free velocity field (with N = 2NxNy =545

2 × 104), A governs the linear dynamics, H is a third-order tensor representative of the546
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Figure 7: Cavity flow: panel (a) shows the vorticity field from the steady-state solution that
exists at Re = 8300, and panel (b) shows the energy (i.e., the squared two norm) of the seven
training trajectories.

quadratic nonlinearity in the Navier-Stokes equation and B is the input matrix obtained547

from (5.3) after enforcing that B generates a divergence-free vector. (For convenience, we also548

scale B to unit norm.) Throughout the remainder of this section, we take y = q (i.e., we549

observe the time evolution of the whole state).550

5.1. Training procedure. We collect seven training trajectories by simulating (5.4) in551

response to impulses552

(5.5) w(t) =

{
β if t = 0

0 if t ̸= 0,
553

with β ∈ {−1.0,−0.25,−0.05, 0.01, 0.05, 0.25, 1.0}. The time history of the energy of the554

training trajectories is shown in figure 7b. We save 160 snapshots from each trajectory at555

equally-distributed temporal instances t ∈ [0, 40], and then we perform POD. Using the first 50556

PODmodes, which contain 99.6% of the variance in the training data, we compute an Operator557

Inference model by minimizing the cost function (2.29). We normalize the trajectories by their558

time-averaged energy and, as in the previous sections, we also penalize the Frobenius norm of559

the third-order tensor H with the regularization parameter taken to be λ = 10−3.560

Given the complexity of the problem and the length of the trajectories, we train Ni-561

TROM as follows. First, we pre-project the data onto the span of the first 200 POD modes,562

which contain > 99.99% of the variance. This guarantees that the optimal NiTROM bases ΦΦΦ563

and ΨΨΨ satisfy the divergence-free constraint in (5.2), since the POD modes are computed from564

divergence-free snapshots. Second, after initializing the search with the Operator Inference565

model, we train by progressively extending the length of the forecasting horizon. That is, we566

first optimize a model to make predictions up to t = 2.5, then t = 5, and so forth all the way567

up to t = 40.568

Since, after a first pass, our model exhibited slightly unstable linear dynamics (possibly569

due to the presence of numerical noise and/or weak decaying oscillations in the tail end of the570
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Figure 8: Cavity flow: panel (a) shows the training error from the 7 training impulses re-
sponses, and panel (b) shows the testing error computed for 25 unseen impulse responses.
The error is defined in equation (5.8).

training data), we added a stability-promoting penalty to our cost function as follows,571

(5.6) J̃ = JNiTROM + µ∥ẑlin(tf )∥2.572

Here, tf is a sufficiently large time (chosen to be 100 in our case) and ẑlin satisfies573

(5.7)
dẑlin
dt

= Arẑlin, ẑlin(0) = ẑlin,0,574

with ẑlin,0 a unit-norm random vector. Notice that this penalty is truly stability-promoting, as575

it is analogous to penalizing the Frobenius norm of eArtf , and shrinking the Frobenius norm576

of the exponential map corresponds to pushing the eigenvalues of Ar farther into the left-half577

plane. The gradient of the penalty term with respect toAr can be computed straightforwardly578

following the same logic used in Proposition 2.1. The regularization parameter µ was held579

at zero for most of the training, until we reached a forecasting horizon t = 40 when we set580

µ = 10−3. The training was conducted using coordinate descent as described in section 4, and581

we stopped the optimization after approximately 2000 iterations.582

5.2. Testing. In this section we compare NiTROM against Operator Inference and POD583

Galerkin. We do not compare against TrOOP because of its intrusive need to access the584

linearized dynamics and the adjoint, and because we are ultimately interested in comparing585

our formulation against other non-intrusive (or weakly intrusive) model reduction techniques.586

We test the models by generating 25 impulse responses with the impulse magnitude β drawn587

uniformly at random from [−1, 1]. The training and testing errors for NiTROM, Operator588

Inference and for the POD-Galerkin model (all with dimension r = 50) are shown in figure 8.589

The error is defined as590

(5.8) e(t) =
N∑N−1

i=0 ∥q(t)∥2
∥q(t)− q̂(t)∥2,591

where q is the ground-truth and q̂ is the prediction given by the reduced-order model. From592

the figure, we see that NiTROM maintains a low error across all trajectories and for all times.593
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Figure 9: Cavity flow: evolution of the energy of the perturbations in response to sinusoidal
inputs w(t). The black line is the full-order model and the rest of the legend is in figure 8.

In particular, we observe that around t = 5 (when the fluid exhibits its peak in transient594

growth, as illustrated in figure 7b) the errors produced by POD Galerkin and Operator Infer-595

ence can be one to two orders of magnitude larger than those produced by NiTROM.596

As in the previous section, we also test the ability of our reduced-order model to predict597

the response of the fluid to sinusoidal inputs w(t) = 0.1 sin(kωt) starting from the stable598

steady state. The results are shown in figure 9, where we see the response to harmonics of599

ω = 1.25 and ω = 1, which are frequencies that are naturally excited by the linear dynamics600

of the flow. In all cases, NiTROM exhibits better predictive accuracy than the other models,601

and it is capable of tracking the early-stage sharp growth of the perturbations as well as602

the cavity’s long-time oscillatory behavior. Finally, in order to gain further insight into the603

performance of these models, we show vorticity snapshots at time t = 35 from two of the604

trajectories with frequency. In figure 10, where the forcing frequency was 4.00, Operator605

Inference and POD Galerkin underestimate the magnitude of the vorticity and they predict606

the wrong phase of the vortical structures (observe the vorticity field near the bottom wall at607

x = 0.5). In figure 11, where the forcing frequency is 1.25, on the other hand, POD Galerkin608

provides a reasonable approximation of the vortical structures despite slightly overestimating609

the vorticity magnitude, while the Operator Inference estimate is overall quite far from the610

ground truth. By contrast, NiTROM provides an accurate estimate of the vorticity phase and611

magnitude in both cases.612

6. Conclusion. In this paper, we have introduced a novel non-intrusive data-driven frame-613

work to compute accurate reduced-order models of high-dimensional systems that exhibit614

large-amplitude transient growth. These systems are ubiquitous in fluid mechanics, and they615

are known to pose challenges to model reduction methods that achieve dimensionality reduc-616

tion via orthogonal projection onto a low-dimensional subspace (or, more generally, onto a617

low-dimensional nonlinear manifold). While these challenges can be addressed by intrusive618

methods that leverage the underlying form of the governing equations to compute an ap-619

propriate oblique projection, purely data-driven frameworks tend to achieve dimensionality620

reduction via orthogonal projection and this can lead to models with poor predictive accuracy.621
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Figure 10: Cavity flow: vorticity field at time t = 35 from the trajectory with forcing frequency
4.00 in figure 9. Red indicates positive vorticy with maximum value 0.73, blue indicates
negative vorticity with minimum value −0.73 and white is zero vorticity.

Given trajectories from the full-order system, we address this issue by solving an optimization622

problem to simultaneously find optimal oblique projection operators and reduced-order dy-623

namics on their range. The framework is termed NiTROM—“Non-intrusive Trajectory-based624

optimization of Reduced-Order Models”—and it is demonstrated on three examples: a simple625

toy model governed by three ordinary differential equations, the complex Ginzburg-Landau626

equations and a two-dimensional incompressible lid-driven cavity flow at Reynolds number627

Re = 8300. In all these examples, NiTROM outperforms state-of-the-art non-intrusive and628

weakly-intrusive methods that rely on orthogonal projections for dimension reduction, and, in629

the first two examples it exhibits similar performance to optimal (intrusive) Petrov-Galerkin630

reduced-order models obtained using the recently-introduced TrOOP formulation [25]. Cur-631

rently, NiTROM is formulated as a linear projection model reduction method, but, in the632
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Figure 11: Cavity flow: vorticity field at time t = 35 from the trajectory with forcing frequency
1.25 in figure 9. Red indicates positive vorticity with maximum value 0.18, blue indicates
negative vorticity with minimum value −0.18 and white is zero vorticity.

future, it would be interesting to explore the possibility of extending it to quadratic (and,633

more generally, polynomial) manifolds, as done within the Operator Inference formulation634

in [14].635
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