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State-specific thermochemical collisional models are crucial to accurately describe the physics 
of systems involving nonequilibrium plasmas, but they are also computationally expensive and 
impractical for large-scale, multi-dimensional simulations. Historically, computational cost has 
been mitigated by using empirical and physics-based arguments to reduce the complexity of the 
governing equations. However, the resulting models are often inaccurate and they fail to capture 
the important features of the original physics. Additionally, the construction of these models is 
often impractical, as it requires extensive user supervision and time-consuming parameter tuning. 
In this paper, we address these issues through an easily implementable and computationally 
efficient model reduction pipeline based on the Petrov-Galerkin projection of the nonlinear 
kinetic equations onto a low-dimensional subspace. Our approach is justified by the observation 
that kinetic systems in thermal nonequilibrium tend to exhibit low-rank dynamics that rapidly 
drive the state towards a low-dimensional subspace that can be exploited for reduced-order 
modeling. Furthermore, despite the nonlinear nature of the governing equations, we observe 
that the dynamics of these systems evolve on subspaces that can be accurately identified using 
the linearized equations about thermochemical equilibrium steady states, and we shall see that 
this allows us to significantly reduce the cost associated with the construction of the model. The 
approach is demonstrated on two distinct thermochemical systems: a rovibrational collisional 
model for the O2-O system, and a vibrational collisional model for the combined O2-O and O2-O2
systems. Our method achieves high accuracy, with relative errors of less than 1% for macroscopic 
quantities (i.e., moments) and 10% for microscopic quantities (i.e., energy levels population), 
while also delivering excellent compression rates and speedups, outperforming existing state-of

the-art techniques.

1. Introduction

Nonequilibrium flows are encountered in many engineering and science disciplines, such as hypersonic atmospheric entry [1--4] 
and material processing and manufacturing with low-temperature plasmas [5,6]. In these applications, the thermodynamic state of the 
flow frequently exhibits significant deviations of the internal energy distribution of the gaseous mixture from its Maxwell-Boltzmann 
equilibrium value. Such deviations can influence key macroscopic properties, including diffusion, viscous stress, heat conduction, 
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internal energy transfer, chemical reactions, and thermal radiation. To describe and understand these complex behaviors and their 
impact, increasingly advanced and extensive mathematical models have been developed [7--11], encompassing multiple physical 
phenomena across a wide range of spatio-temporal scales.

The exact description of thermochemical and radiative processes can be achieved at the microscopic level by considering state

to-state (StS) collisions among atoms, molecules, and electrons, as well as the emission and absorption of photons. This approach 
is mathematically formalized through the StS master equations [9--15]. By leveraging quantum chemistry models based on ab initio 
theories [16--21], these equations provide an unprecedented level of accuracy in describing the nonequilibrium state of gases by 
capturing the microscopic interactions between colliding particles in diverse chemical systems [10,11,22,23]. While these models 
provide exceptional accuracy, they are impractical in large-scale multi-dimensional simulations due to the significant increase in 
the number of degrees of freedom (i.e., the molecules’ and atoms’ energy levels). As a result, detailed StS calculations are typically 
employed to develop more efficient reduced-order models to be used in computational fluid dynamics (CFD) simulations.

Reduced-order models (ROMs) aim to capture the essential features of the system dynamics while significantly reducing the 
computational cost associated with the highfidelity full-order model (FOM). The earliest ROM for thermochemical nonequilibrium, 
introduced by Landau and Teller [24], was based on several physical assumptions applicable only to simple harmonic oscillator 
molecules, resulting in a linear relaxation model. Building upon this formulation, more sophisticated models have been developed 
over the years to account for the coupling between vibration and dissociation [25--28]. However, many of these models, known 
as multi-temperature (MT) models [2,29--32], rely on crude, semi-empirical assumptions. They are typically constructed based on a 
rigid separation of internal energy modes (translational, rotational, vibrational, and electronic), without any rigorous derivation from 
fundamental kinetic equations nor consideration for physical principles and constraints. Given their interpolative nature, these con

ventional methods are fundamentally inadequate for capturing the behavior of gas particles under strong nonequilibrium conditions, 
where the distribution of internal energy levels exhibits complex features [10,11,33]. By contrast, state-of-the-art coarse-grained (CG) 
ROMs [34--38] provide a more effective solution compared to the traditional MT models. These coarse-grained approaches work by 
grouping individual energy levels into a smaller number of macroscopic bins. State populations are reconstructed using bin-wise 
distribution functions that maximize entropy and adhere to constraints based on bin properties (e.g., population, energy, or higher 
moments). The governing equations for the reduced-order system are derived by summing moments of the StS master equations. 
Although these models have demonstrated sufficient accuracy, they have a few limitations. First, while the principle of maximum 
entropy used to locally reconstruct microscopic scales within each bin perfectly adheres to physical principles, it may not fully capture 
the complex features of the distribution function. Second, the accuracy of the coarse-grained model is highly dependent on the ef

fectiveness of the clustering. Significant effort, in the form of time-consuming optimization or physics-based analysis of the chemical 
system, is often required to achieve optimal clustering [39--45].

This work aims to advance the state of the art of model reduction for thermochemical kinetics by introducing a computationally

e˙icient pipeline that offers several key improvements over the existing reduced-complexity modeling formulations described above. 
First, the proposed method bypasses the need for empirical or physical assumptions, enhancing both accuracy and flexibility across a 
wide range of nonequilibrium conditions. Second, it avoids the need for time-consuming system analysis or optimization to identify 
the optimal reduced-order representation of the original dynamics. The fundamental component of the model reduction pipeline 
discussed herein is the construction of a Petrov-Galerkin model obtained by projecting the full-order dynamics (i.e., the StS master 
equations) onto a low-dimensional linear subspace of the state-space. Obtaining an accurate Petrov-Galerkin model requires the 
careful design of a linear projection operator of the form ℙ =𝚽 (𝚿⊺𝚽)−1𝚿⊺, where 𝚽 and 𝚿 are tall rectangular matrices whose 
spans uniquely define ℙ. While the most simplistic approach to obtain a projection-based model is by orthogonally projecting onto 
the span of Proper Orthogonal Decomposition (POD) modes of highfidelity data (see, e.g., [46,47] in the context of compressible 
flows and [48--50] in the context of thermochemical kinetics), it is well-known that physical systems that exhibit transient growth 
and high sensitivity to low-energy disturbances require modeling approaches based on oblique projections [51--54]. If the full-order 
system is linear, or if the nonlinear dynamics evolve in the proximity of an equilibrium, appropriate oblique projection operators 
can be constructed using balanced truncation and its variants [55--59], where a Petrov-Galerkin ROM is obtained by balancing the 
controllability and observability Gramians associated with the underlying linear system. For nonlinear systems evolving far away 
from equilibria, Otto et al. [53] recently introduced ``Covariance Balancing Reduction using Adjoint Snapshots'' (CoBRAS), which is 
a formulation that determines (quasi) optimal oblique projection operators by balancing the state and gradient covariance matrices 
associated with the full-order solution map. Given the non-normal nature of the StS master equations, and their high sensitivity to 
low-energy disturbances, it is essential to seek appropriate oblique projection operators to obtain accurate Petrov-Galerkin models 
and we therefore choose to adopt the aforementioned CoBRAS formulation. More specifically, we tailor CoBRAS to the StS master 
equations, and we assemble the state and gradient covariance matrices using linear trajectories governed by the linearization of 
the StS equations about thermochemical equilibria. Using the linearized equations allows us to generate the required forward and 
adjoint trajectories using the exact solution of linear ordinary differential equations, as opposed to numerically integrating a stiff set 
of nonlinear equations, and this results in computational savings of several orders of magnitude. Additionally, despite the fact that 
these trajectories are a first-order approximation of the nonlinear solution of the StS equations, we shall see that the loss of accuracy 
is minimal, and we can still capture the relevant subspaces that are necessary to construct an appropriate oblique projector ℙ for 
Petrov-Galerkin modeling. The performance of the proposed models is assessed on two thermochemical systems involving a pure 
oxygen mixture: a rovibrational collisional (RVC) model and a vibrational collisional (VC) model. On both systems, our formulation 
significantly outperforms state-of-the-art model reduction methods for chemical kinetics and is capable of providing accurate estimates 
of the moments of the distribution function and of the evolution of the internal energy level population.
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The paper is organized as follows. Section 2 introduces the microscopic master equations that describe gas mixtures undergoing 
internal excitation, dissociation, or ionization within a 0D isothermal chemical reactor. Section 3 provides a detailed description of the 
proposed model reduction approach. Section 4 presents a brief overview of existing model reduction techniques for nonequilibrium 
chemical kinetics, and section 5 outlines the numerical results of the ROMs applied to the RVC and VC thermochemical models. 
Finally, section 6 offers concluding remarks and explores potential avenues for future research.

2. Physical modeling

Our objective is to investigate the behavior of a general mixture under sudden heating in an ideal chemical reactor. For this 
purpose, we make the following assumptions:

i. The 0D reactor is plunged into a thermal bath maintained at constant temperature 𝑇 .

ii. The translational energy mode of the atoms and molecules is assumed to follow a Maxwell-Boltzmann distribution at the tem

perature 𝑇 of the thermal bath.

iii. At the beginning of the numerical experiment, the population of the rovibrational energy levels is assumed to follow a Boltzmann 
distribution at the initial equilibrium temperature 𝑇0 .

iv. The volume of the chemical reactor is kept constant during the experiment, and the thermodynamic system is closed (no mass 
exchange with the surrounding environment).

We consider both state-to-state (StS) collisional and radiative processes involving atoms or molecules, denoted by the symbol 
𝐴, which may undergo internal excitation, de-excitation, recombination, ionization, and/or dissociation through interactions with 
other particles, 𝐵, which could include electrons, or through photon absorption and emission, also represented by 𝐵. The internal 
excitation and de-excitation processes can encompass electronic, rotational, and vibrational transitions. Any ionization or dissociation 
of 𝐴 results in the formation of particles 𝐶 and 𝐷. It should be noted that 𝐴, 𝐵, 𝐶 , and 𝐷 are generic placeholders and may represent 
the same type of particles. Superscripts 𝑖, 𝑗, 𝑘, 𝑙, 𝑝, and 𝑞 are used to indicate internal states of the species involved. A generic form 
of collisional and radiative processes can be expressed as

i. internal excitation and de-excitation:

𝐴(𝑖) +𝐵(𝑗)
𝑘e
𝑖𝑗𝑘𝑙

←←←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←←←
𝑘e
𝑘𝑙𝑖𝑗

𝐴(𝑘) +𝐵(𝑙) , (1)

ii. ionization, dissociation, and recombination:

𝐴(𝑖) +𝐵(𝑗)
𝑘d
𝑖𝑗𝑝𝑞𝑙

←←←←←←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←←←←←←
𝑘r
𝑝𝑞𝑙𝑖𝑗

𝐶(𝑝) +𝐷(𝑞) +𝐵(𝑙) . (2)

We also introduce 𝑛𝑖
𝑠
, 𝑔𝑖

𝑠
, and 𝜖𝑖

𝑠
, representing the population (or number density), degeneracy, and energy level of state 𝑖 ∈ 𝑠

for species 𝑠 ∈  , respectively. Here, 𝑠 represents the set of energy levels for species 𝑠, and  denotes the set of chemical species in 
the mixture. All energy levels 𝜖𝑖𝑠 are referenced to a common zero-point energy. Therefore, for each species in the gas mixture, the 
dissociation or ionization energy is accounted for within 𝜖𝑖𝑠. Each energy level is treated as an individual species, and their production 
rates can be computed using the zeroth-order reaction rate theory, leading to the formulation of the master equations. For instance, 
the governing equation for the population density of state 𝑖 for species 𝐴, accounting for the processes described by (1) and (2), can 
be expressed as

𝑑𝑛𝑖
𝐴

𝑑𝑡 
=
∑
𝑗,𝑘,𝑙

(
−𝑘e

𝑖𝑗𝑘𝑙
𝑛𝑖
𝐴
𝑛
𝑗

𝐵
+ 𝑘e

𝑘𝑙𝑖𝑗
𝑛𝑘
𝐴
𝑛𝑙
𝐵

)
+

∑
𝑗,𝑙,𝑝,𝑞

(
−𝑘d

𝑖𝑗𝑝𝑞𝑙
𝑛𝑖
𝐴
𝑛
𝑗

𝐵
+ 𝑘r

𝑝𝑞𝑙𝑖𝑗
𝑛
𝑝

𝐶
𝑛
𝑞

𝐷
𝑛𝑙
𝐵

)
. (3)

Here, 𝑘e
𝑖𝑗𝑘𝑙

and 𝑘e
𝑘𝑙𝑖𝑗

represent the Maxwellian-distribution-based state-to-state excitation and de-excitation rate coefficients for process 
(1), while 𝑘d

𝑖𝑗𝑝𝑞𝑙
and 𝑘r

𝑝𝑞𝑙𝑖𝑗
represent the ionization/dissociation and recombination rate coefficients for process (2). These microscopic 

state-to-state rate coefficients obey the principles of detailed balance (or microreversibility) and depend on the translational tempera

ture 𝑇 . The forward (exothermic) rate coefficients were calculated using the quasi-classical trajectory (QCT) method [60]. Equivalent 
master equations can be written for the internal states of species 𝐵, 𝐶 , and 𝐷 using a similar form to equation (3). Further details on 
notation and specific equations will be provided in section 5 for each thermochemical system investigated.

2.1. State-space representation

For the scope of this work, it is convenient to express the governing equations (3) in compact state-space form as follows

𝑑

𝑑𝑡
𝐧(𝑡) = 𝐡(𝐧(𝑡);𝑇 ) , 𝐧(0) = 𝐧0 (𝜻) , (4)
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where the state vector 𝐧(𝑡) ∈ ℝ𝑁 represents the number densities associated with each state 𝑖 ∈ 𝑠 for all species 𝑠 ∈  , so that 
𝑁 =

∑
𝑠∈ ||𝑠|| and ||𝑠|| denotes the cardinality of the set 𝑠. The initial condition 𝐧(0) ∈ℝ𝑁 is defined by the function 𝐧0 ∶ℝ𝑝 →ℝ𝑁 , 

which takes a set of parameters 𝜻 ∈ℝ𝑝 as input. These parameters include the density 𝜌, initial equilibrium temperature 𝑇0 , and the 
initial species mass fractions, 𝑤𝑠0

, for each 𝑠 ∈  . For isothermal chemical reactors where 𝑑𝑇 ∕𝑑𝑡 = 𝑑𝜌∕𝑑𝑡 = 0, the dynamics in (4)

admit thermochemical equilibrium solutions 𝐧(𝜌,𝑇 ) that are functions of density and temperature. To emphasize the importance of 
these two parameters and to adopt a more standard dynamical-systems notation, we pass the parametric density dependence of the 
solution 𝐧(𝑡) from the initial condition to the dynamics. Thus, using the linear change of coordinates

𝐧(𝑡) = 𝜌 diag(𝐦)−1𝐰(𝑡) , (5)

where 𝐰(𝑡) ∈ℝ𝑁 is the vector of mass fractions and 𝐦 ∈ℝ𝑁 is the (constant) vector of masses, equation (4) becomes

𝑑

𝑑𝑡
𝐰(𝑡) = 𝐟(𝐰(𝑡);𝜽) , 𝐰(0) =𝐰0 (𝝁) , (6)

where 𝜽 = (𝑇 , 𝜌) and 𝝁 contains the initial equilibrium temperature 𝑇0 and the initial species mass fractions. It is also useful to define 
a vector of outputs 𝐲

𝐲(𝑡) =𝐂𝐰(𝑡) , (7)

which, in general, contains physical quantities that we are interested in. In the present work, we let 𝐲(𝑡) ∈ ℝ(𝑚+1)|| represent the 
moments of orders 0 through 𝑚 of the distribution function for each species in the mixture. More specifically, the 𝑗-th moment 
associated with species 𝑠 is defined through the output matrix 𝐂 as follows

𝐲𝑠,𝑗 = (𝐂𝐰)𝑠,𝑗 =
1 
𝑗!

∑
𝑖∈𝑠

1 
𝑀𝑠

(
𝜖𝑖𝑠
)𝑗
𝑤𝑖
𝑠 , (8)

where 𝑀𝑠 is the species molar mass and the species energy levels 𝜖𝑖
𝑠

have units of eV.

3. Projection-based model reduction

The numerical solution of the nonlinear governing equation (6) is often computationally prohibitive due to the large number of 
degrees of freedom (i.e., the molecules’ and atoms’ energy levels), and to the presence of extremely fast time scales that impose severe 
numerical restrictions on temporal integration schemes. These issues can be mitigated by computing reduced-order models that can 
be integrated in time at a fraction of the computational cost of the full-order model (6). In this work, these models are computed 
using a Petrov-Galerkin procedure, where the dynamics are (obliquely) projected onto a low-dimensional subspace.

3.1. Petrov-Galerkin model reduction

In (linear) Petrov-Galerkin model reduction, the state 𝐰(𝑡) ∈ℝ𝑁 is constrained to a 𝑟-dimensional subspace of ℝ𝑁 defined by the 
range of the rank-𝑟 linear projection operator ℙ. That is, 𝐰̂(𝑡) = ℙ𝐰(𝑡) ∈ℝ𝑁 , where 𝐰̂(𝑡) is the approximation of the state 𝐰(𝑡) on the 
span of ℙ. Injecting this ansatz into (6), it is easy to see that the dynamics of 𝐰̂ are governed by

𝑑

𝑑𝑡
𝐰̂(𝑡) = ℙ𝐟(ℙ𝐰̂(𝑡);𝜽) , 𝐰̂(0) = ℙ𝐰0(𝝁) ,

𝐲̂(𝑡) =𝐂ℙ𝐰̂(𝑡) .
(9)

Equation (9) is known as a Petrov-Galerkin model of (6). While the state 𝐰̂(𝑡) is 𝑁 -dimensional (i.e., the same dimension as the 
original state 𝐰(𝑡)), an equivalent reduced-order representation of the dynamics in (9) can be written in terms of an 𝑟-dimensional 
vector of coefficients 𝐳̂(𝑡). In particular, since any rank-𝑟 linear projector ℙ can be written as ℙ =𝚽 (𝚿⊺𝚽)−1𝚿⊺, where 𝚽 and 𝚿 are 
rank-𝑟 matrices of size 𝑁 × 𝑟, defining 𝐳̂(𝑡) =𝚿⊺𝐰̂(𝑡) and left-multiplying the first equation in (9) by 𝚿⊺ we obtain

𝑑

𝑑𝑡
𝐳̂(𝑡) =𝚿⊺𝐟(𝚽

(
𝚿⊺𝚽

)−1 𝐳̂(𝑡);𝜽) , 𝐳̂(0) =𝚿⊺𝐰0(𝝁) ,

𝐲̂(𝑡) =𝐂𝚽
(
𝚿⊺𝚽

)−1 𝐳̂(𝑡) , (10)

which is the Petrov-Galerkin reduced-order model that we sought. The accuracy of this model depends exclusively on the choice of 
trial and test subspaces spanned by 𝚽 and 𝚿, respectively, so it is essential to choose these subspaces appropriately. In this work, we 
define these subspaces using the recently introduced CoBRAS formulation [53], which we describe in the next subsection.

3.2. Covariance Balancing Reduction using Adjoint Snapshots (CoBRAS)

Let us consider the following map

𝐹 ∶ℝ𝑁 →ℝ𝑞 ∶𝐰(𝑡0;𝜽,𝝁)↦
(
𝐲(𝑡0;𝜽,𝝁),𝐲(𝑡1;𝜽,𝝁),… ,𝐲(𝑡𝐿−1;𝜽,𝝁)

)
, (11)
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which sends a state 𝐰(𝑡0;𝜽,𝝁) along a trajectory of (6) to a sequence of 𝐿 measurements 𝐲(𝑡𝑘;𝜽,𝝁) collected at times 𝑡𝑘 ≥ 𝑡0. (Notice 
that 𝑡0 is not necessarily equal to 0.) A similar map may be defined for the Petrov-Galerkin dynamics (9)

𝐹 ∶ℝ𝑁 →ℝ𝑞 ∶ ℙ𝐰(𝑡0;𝜽,𝝁)↦
(
𝐲̂(𝑡0;𝜽,𝝁), 𝐲̂(𝑡1;𝜽,𝝁),… , 𝐲̂(𝑡𝐿−1;𝜽,𝝁)

)
. (12)

Within CoBRAS, we measure the accuracy of the Petrov-Galerkin model in the mean square sense, and we therefore seek the pro

jection operator ℙ that minimizes the mean square error 𝔼
[
𝐹 (𝐰) − 𝐹 (ℙ𝐰)

]
. Direct optimization of this cost function using, e.g., 

gradient descent, would be computationally expensive, so we proceed by leveraging a useful result in [61]. In particular, under the 
assumption that the states 𝐰(𝑡0;𝜽,𝝁) are normally distributed with covariance 𝑊𝑠 , Proposition 2.5 in [61] shows that the mean square 
approximation error is upper-bounded by

trace
(
𝑊𝑔 (𝐼 −ℙ)𝑊𝑠 (𝐼 −ℙ)⊺

)
, (13)

where 𝑊𝑔 = 𝔼 [∇𝐹∇𝐹 ⊺] is the gradient covariance and ∇𝐹 =𝐷𝐰𝐹 (𝐰)⊺ ∈ℝ𝑁×𝐿 dim(𝐲), with 𝐷𝐰 being the differential (or Jacobian) 
operator with respect to 𝐰. Minimizing equation (13) is a much simpler task, and Theorem 2.3 in [53] provides a closed-form 
expression for the optimal ℙ. Specifically, given the following factorizations 𝑊𝑠 = 𝑋𝑋⊺ and 𝑊𝑔 = 𝑌 𝑌 ⊺ of the state and gradient 
covariances, the optimal rank-𝑟 projector may be expressed as ℙ =𝚽𝚿⊺ with

𝚽 =𝑋𝑉𝑟Σ
−1∕2
𝑟 , 𝚿 = 𝑌 𝑈𝑟Σ

−1∕2
𝑟 , (14)

where 𝑈𝑟, 𝑉𝑟, and Σ𝑟 are the leading 𝑟 left and right singular vectors and singular values of the product 𝑌 ⊺𝑋. Notice that 𝚿⊺𝚽 is equal 
to the identity matrix by construction, so that ℙ is indeed a projection. In the next subsection, we describe an efficient numerical 
procedure tailored specifically for the dynamical system in (6) to compute (an approximation of) the state and gradient covariance 
matrices 𝑊𝑠 and 𝑊𝑔 .

3.3. Computing the covariance matrices

In this section, we present a computationally-e˙icient approach to estimate the covariance factors 𝑋 and 𝑌 that are needed to 
compute the CoBRAS projection (14). The state 𝐰 along trajectories of (6) is a function of the temporal variable 𝑡0 and of the physical 
parameters 𝜽 and 𝝁. Thus, if we draw 𝑡0, 𝜽, and 𝝁 from continuous mutually-independent distributions with probability density 
functions 𝑓T0 , 𝑓𝚯, and 𝑓𝐌, the state covariance is defined as

𝑊𝑠 ∶= 𝔼
[
𝐰𝐰⊺] = ∫ 𝐰(𝑡0;𝜽,𝝁) 𝐰(𝑡0;𝜽,𝝁)⊺ 𝑓T0 (𝑡0) 𝑓𝚯(𝜽) 𝑓𝐌(𝝁) 𝑑𝑡0 𝑑𝜽𝑑𝝁 ≈𝑋𝑋⊺ , (15)

where 𝑋 is a numerical-quadrature factor that is defined as in equations (20) and (21) of [57]. The computational burden asso

ciated with the numerical approximation of (15) lies in computing 𝐰(𝑡0;𝜽,𝝁) along trajectories of (6), which requires integrating 
the numerically-stiff governing equations (6) from time 0 to time 𝑡0. Similar considerations hold for the estimation of the gradient 
covariance matrix, which may be written as

𝑊𝑔 ∶= 𝔼
[
∇𝐹∇𝐹 ⊺] = ∫ ∇𝐹 (𝐰(𝑡0;𝜽,𝝁)) ∇𝐹 (𝐰(𝑡0;𝜽,𝝁))⊺ 𝑓T0 (𝑡0) 𝑓𝚯(𝜽) 𝑓𝐌(𝝁) 𝑑𝑡0 𝑑𝜽𝑑𝝁 ≈ 𝑌 𝑌 ⊺ , (16)

where 𝑌 is a numerical-quadrature factor defined similarly to 𝑋 in (15), and a closed-form expression for ∇𝐹 is provided in the 
proposition below.

Proposition 1. Let 𝐠(𝑘)
𝑗

∶=
(
𝐷𝐰𝑦𝑗 (𝑡𝑘;𝜽,𝝁)

)⊺
denote the 𝑗-th column of the 𝑘-th block of ∇𝐹 ∈ℝ𝑁×𝐿 dim(𝐲), with 𝑗 ∈ {1,2,… ,dim(𝐲)} and 

𝑘 ∈ {0,1,… ,𝐿− 1}. Then 𝐠(𝑘)
𝑗

= 𝝃(𝑡0), where 𝝃(𝑡) satisfies the (backward-in-time) adjoint equation

− 𝑑

𝑑𝑡
𝝃(𝑡) =𝐷𝐟(𝐰(𝑡;𝜽,𝝁))⊺𝝃(𝑡) , 𝝃(𝑡𝑘) =𝐂⊺𝐞𝑗 , 𝑡 ∈ [𝑡0, 𝑡𝑘] , (17)

and 𝐞𝑗 is the 𝑗-th unit vector of the standard basis of ℝdim(𝐲).

Proof. The proof is given in Appendix A. □

The adjoint equation (17) shares the same numerical stiffness as the forward nonlinear dynamics (6), and this can make its numer

ical integration expensive. In order to reduce the overall computational cost required to estimate the state and gradient covariance 
matrices, we propose to work with the linearized dynamics of (6). This will let us leverage the exact solution of linear ordinary differen

tial equations, thereby bypassing the need for numerical integration of the high-dimensional stiff governing equations. Additionally, 
we shall see momentarily that the (approximate) gradient ∇𝐹 will become a function of 𝜽 only, so that the (approximate) definition 
of 𝑊𝑔 in (16) will no longer require integrating over 𝑡0 and 𝝁.
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As previously mentioned, for a given value of 𝜽, the dynamics in (6) exhibit a linearly stable thermochemical equilibrium solution, 
which we shall denote 𝐰(𝜽). Then, the linear dynamics of about 𝐰(𝜽) are governed by

𝑑

𝑑𝑡
𝐰′
𝜽
(𝑡) =𝐷𝐟(𝐰(𝜽))

⏟ ⏞⏞⏟ ⏞⏞⏟
∶=𝐀𝜽

𝐰′
𝜽
(𝑡) , 𝐰′

𝝁,𝜽
(0) =𝐰0(𝝁) −𝐰(𝜽) , (18)

where 𝐀𝜽 is the state Jacobian evaluated about the equilibrium solution. Using the variation of constants formula, we can then 
approximate 𝐰(𝑡0;𝜽,𝝁) in (6) as follows

𝐰(𝑡0;𝜽,𝝁) ≈𝐰(𝜽) + 𝑒𝐀𝜽𝑡0𝐰′
𝝁,𝜽

(0) . (19)

Similarly, we can approximate 𝐠(𝑘)
𝑗

in Proposition 1 using the time-invariant adjoint equation

− 𝑑

𝑑𝑡
𝝃(𝑡) =𝐀⊺

𝜽
𝝃(𝑡) , 𝝃(𝑡𝑘) =𝐂⊺𝐞𝑗 , 𝑡 ∈ [𝑡0, 𝑡𝑘] , (20)

where 𝐀𝜽 is precisely the zeroth-order approximation of 𝐷𝐟(𝐰(𝑡;𝜽,𝝁)). Once again, using the variation of constants formula, we have

𝐠(𝑘)
𝑗

= 𝑒
𝐀⊺
𝜽
(𝑡𝑘−𝑡0)𝐂⊺𝐞𝑗 . (21)

Here, we see that 𝐠(𝑘)
𝑗

is a parametric function of 𝜽 only. More specifically, we remark that 𝐠(𝑘)
𝑗

is not a function of 𝑡0, but rather of 
𝑡𝑘 − 𝑡0, and this is consistent with the time-invariant nature of equation (20). It follows that the (approximate) gradient covariance 
matrix in (16) can be written as

𝑊𝑔 ≈ ∫ ∇𝐹 (𝜽) ∇𝐹 (𝜽)⊺ 𝑓𝚯(𝜽) 𝑑𝜽 . (22)

In equations (19) and (21) the matrix exponential can be computed efficiently using the eigendecomposition of 𝐀𝜽. The overall 
procedure to obtain the projection factors 𝚽 and 𝚿 is illustrated in Algorithm 1.

Remark. In this paper, we consider systems that exhibit one single equilibrium for a given value of 𝜽. In systems where multiple 
equilibria coexist, the same approximations illustrated in equations (19) and (21) hold around any one of the coexisting steady states 
and the user may choose freely which steady state to use for the linearization.

Algorithm 1 Computing the factor 𝚽 and 𝚿 for the linear projection operator ℙ =𝚽𝚿⊺.

Require: Set of quadrature points for temperatures and densities (), initial condition parameters (), and initial times (0), along with their associated quadrature 
weights, to approximate the integrals in equations  (15) and  (16).

1: Initialize dynamic set 0 .

2: for 𝝁 ∈ do

3: Compute the parametrized initial condition 𝐰0(𝝁).
4: Add 𝐰0 to the set 0 .

5: end for

6: Initialize dynamic arrays 𝑋 and 𝑌 .

7: for 𝜽 ∈  do

8: Compute the equilibrium steady-state 𝐰(𝜽).
9: Construct matrix 𝐀𝜽 and compute its eigendecomposition 𝐀𝜽 =𝐕𝚲𝐕−1 .

10: Computing state covariance

11: for 𝐰0 ∈0 do

12: for 𝑡0 ∈ 0 do

13: Compute 𝐰(𝑡0;𝜽,𝝁) using equation (19) and 𝑒𝐀𝜽 𝑡0 =𝐕𝑒𝚲𝑡0𝐕−1 .

14: Append √𝛿𝑠𝐰(𝑡0;𝜽,𝝁) to 𝑋, where 𝛿𝑠 = 𝑓T0
(𝑡0)𝑓𝚯(𝜽)𝑓𝐌(𝝁)𝑤𝑡0

𝑤𝜽𝑤𝝁 , and 𝑤𝑡0
, 𝑤𝜽 , and 𝑤𝝁 are the quadrature weights.

15: end for

16: end for

17: Computing gradient covariance

18: for 𝑗 ∈ {1,2,… ,dim(𝐲)} do

19: for 𝑘 ∈ {0,1,… ,𝐿− 1} do

20: Compute 𝐠𝑗 (𝑡𝑘;𝜽) using equation (21) and 𝑒𝐀⊺
𝜽
(𝑡𝑘−𝑡0 ) =𝐕−⊺𝑒𝚲(𝑡𝑘−𝑡0 )𝐕⊺ .

21: Append √𝛿𝑔𝐠𝑗 (𝑡𝑘;𝜽) to 𝑌 , where 𝛿𝑔 = 𝑓𝚯(𝜽)𝑤𝜽 .

22: end for

23: end for

24: end for

25: Perform SVD 𝑌 ⊺𝑋 =𝑈Σ𝑉 ⊺ .

26: Compute matrices 𝚽 and 𝚿 using equation (14).



Journal of Computational Physics 533 (2025) 113999

7

I. Zanardi, A. Padovan, D.J. Bodony et al. 

4. Existing model reduction formulations

The conventionally used model reduction techniques primarily focus on predicting macroscopic quantities, such as total species 
mass and internal energy, which are essential in flow measurements and simulations. These quantities can be modeled using additional 
conservation equations, beyond the standard hydrodynamic equations, to account for variations in chemical composition and the 
nonequilibrium relaxation of energy modes. In the most general formulation, this additional set of governing equations can be derived 
by taking successive moments of the master equations (3), as follows

∑
𝑖∈𝑔⊆𝑠

(
𝜖𝑖𝑠
)𝑚 𝑑𝑛𝑖

𝑠

𝑑𝑡 
=Ω𝑔

𝑠,𝑚 , ∀ 𝑔 ∈
{
1,… ,𝑁𝑔

}
. (23)

In this context, 𝑔 represents a pseudo-species, which refers to a particular species internal degree of freedom treated as a state variable. 
The parameter 𝑚 indicates the moment order, while Ω𝑔

𝑠,𝑚 denotes the reactive source term of order 𝑚 for the pseudo-species 𝑔. Based 
on the assumptions used to define the subset 𝑔 ⊆ 𝑠, two distinct simplified models can be derived.

4.1. Coarse-grained models

If the subset 𝑔 represents a group of states, the approach is named coarse-grained (CG) modeling [35,38--43,62]. The construction 
of such a model involves a two-step procedure: (i) grouping energy states into 𝑁𝑔 macroscopic bins (or groups) according to a specified 
strategy, and (ii) defining a bin-wise distribution function to represent the population within each group, subject to a series of moment 
constraints. Various clustering techniques have been proposed for step (i) [34,41,42,45] and in this work, we adopt the advanced 
spectral clustering technique proposed by Sahai et al. [41]. For step (ii), Liu et al. [38] applied the maximum entropy principle to 
derive a log-linear representation of the bin-wise distribution function, yielding a thermalized local Boltzmann distribution for each 
bin. This distribution is expressed as follows

ln
𝑔𝑖𝑠

𝑛𝑖𝑠
= 𝛼𝑔

𝑠
+ 𝛽𝑔

𝑠
𝜖𝑖
𝑠
, 𝑖 ∈ 𝑔 , (24)

where the bin-specific coefficients 𝛼𝑔𝑠 and 𝛽𝑔𝑠 are expressed as a function of the macroscopic group constraints (i.e., number density 
and energy). The populations and internal energies of the different bins serve as the unknowns in the reduced-order system, leading 
to a total of 2 ×𝑁𝑔 additional conservation equations. For further details, please refer to [38].

This model reduction technique effectively maintains positivity and guarantees positive entropy production by design. However, 
these advantages come with practical challenges due to the use of a nonlinear function of exponential nature. Specifically, coarse

grained rates must be interpolated across group energies (or temperatures), and this can increase computational costs and introduce 
potential errors and instabilities, as it necessitates prior knowledge of the relevant temperature ranges.

4.2. Multi-temperature models

In the specific case of binning one group per internal energy mode, which is a particular case of the CG approach, multi-temperature 
(MT) models are employed [2,30,32]. This framework adds an additional conservation equation for the species total number density, 
along with individual conservation equations for each energy mode (vibrational, rotational, and electronic). While this method is 
still commonly used in the CFD community, many of these models are based on simplistic, semi-empirical assumptions. They often 
rely on a rigid separation of internal energy modes without rigorous derivation from fundamental kinetic equations or consideration 
of physical principles. In this study, we adopt a more rigorous approach, utilizing the recent quasi-steady-state (QSS) method [10], 
which computes its kinetic database directly from state-to-state calculations.

5. Numerical experiments

In this section, we evaluate the performance of the proposed CoBRAS model on two distinct thermochemical systems. Both of 
these involve a pure oxygen mixture, denoted as  = {O,O2}, with both species in their electronic ground state.

i. The first system is a rovibrational collisional (RVC) model, which considers only molecule-atom collisions and has been exten

sively studied in prior works [10,38,41,42]. This model serves as a benchmark to compare CoBRAS with traditional approaches, 
including coarse-graining (CG), multi-temperature models (MT), and the POD-Galerkin approach [48,49].

ii. The second system is a vibrational collisional (VC) model, which includes both molecule-molecule and molecule-atom collisions. 
The resulting equations are quadratic in the O2 energy level population. Despite the nonlinearity, we demonstrate that the 
linearized dynamics around thermochemical equilibrium remain representative of the subspaces on which the nonlinear dynamics 
evolve, and this justifies the use of the procedure described in section 3.3 to approximate the covariance matrices. Here, we 
compare CoBRAS against POD-Galerkin only since we have no access to validated solvers that implement the CG approach on 
this system.
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Table 1
Sampled parameter space for the RVC model. Sampling bounds and distributions 
for each parameter used to generate the training and testing trajectories.

𝑇 [K] 𝜌 [kg/m3] 𝑤O0
𝑇0 [K] 

Minimum 5 000 10−4 0.01 500 
Maximum 15 000 1 1 5 000 
Distribution Uniform Log-uniform Uniform Log-uniform 

In all (Petrov-)Galerkin models implemented in this section, we seek a reduced-order representation of the O2 energy levels, 
while the O dynamics are accounted for exactly (see sections S.1.2 and S.2.2 in the Supplementary Material). All test cases were 
implemented in Python, employing the SciPy solve_ivp function with the LSODA method for time integration. The code used for 
our experiments can be found at https://github.com/ivanZanardi/ronek. All the CG and MT solutions were computed using the plato 
(PLAsma in Thermodynamic nOnequilibrium) library [63].

5.1. O2-O rovibrational collisional model

In our first numerical experiment, we investigate the rovibrational excitation and dissociation of an O2 molecule colliding with an 
O atom. The O2 molecule has 6 115 rovibrational energy levels, resulting in a total of 𝑁 = 6 116 degrees of freedom for the system. 
The kinetic database for the O2-O system comprises two types of processes:

i. collisional dissociation,

O2(𝑖) + O
a𝑘d

𝑖
 

←←←←←←←←←←←←←←←←⇀ ↽←←←←←←←←←←←←←←←←a𝑘r
𝑖

O+O+O , (25)

ii. collisional excitation, including both inelastic (nonreactive) and exchange processes,

O2(𝑖) + O
a𝑘e

𝑖𝑗

←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←a𝑘e

𝑗𝑖

O2(𝑗) + O . (26)

The RVC model here described is governed by the following set of equations

𝑑𝑛𝑖

𝑑𝑡 
=
∑
𝑗∈

(
−a𝑘e

𝑖𝑗
𝑛𝑖𝑛O + a𝑘e

𝑗𝑖
𝑛𝑗𝑛O

)
− a𝑘d𝑖 𝑛𝑖𝑛O + a𝑘r𝑖 𝑛

3
O
, (27)

𝑑𝑛O

𝑑𝑡 
=− 2

∑
𝑖∈ 

𝑑𝑛𝑖

𝑑𝑡 
. (28)

For interested readers, the linearized FOM equations necessary to implement the method described in Sections 3.1 to 3.3, as well as 
the derivation of the ROM, are available in Supplementary Material sections S.1.1 and S.1.2.

The bounds and distributions used to sample training and testing trajectories for the RVC model are provided in Table 1. Here, 
𝑤O0

denotes the initial mass fraction of O, with 𝑤O2
= 1 −𝑤O always applicable. For training, we use Arrheniusfitted rates derived 

from quasi-classical trajectory (QCT) calculations, evaluated at 10 different temperatures uniformly sampled within the range of 
[5,15]×103 K. This range includes the boundary temperatures, with a step size of Δ𝑇 = 1 111.11 K. For testing, we select 10 randomly 
chosen temperatures within the same range using LHS. A total of 𝑀 = 1 000 testing trajectories are sampled, with 100 trajectories 
for each selected temperature. 

5.1.1. Linearized FOM performances

In this section, we assess the performance of the linearized FOM employed in constructing the Petrov-Galerkin ROM. In particular, 
our goal is to demonstrate that the procedure illustrated in section 3.3 leads to significant computational savings while still capturing 
the relevant subspaces for Petrov-Galerkin modeling. The computational cost is tabulated in Table 2, where we compare the cost 
required to generate one (or more) trajectories of the nonlinear FOM in equation (6) and the cost of evaluating (19) using the matrix 
exponential. In particular, the third column of the table shows that once the eigendecomposition of 𝐀𝜽 is available, evaluating (19)

is four orders of magnitude faster than time-stepping (6). For a more realistic comparison, however, we should also account for 
the cost associated with computing the eigendecomposition, which scales with the cube of the matrix dimension. This operation is 
indeed costly, but fortunately, it can be performed once (per equilibrium) and then held in memory (or stored) for future use. The 
last column in Table 2 shows that, despite the costly eigendecomposition, we still achieve a factor of 400 speed-up when generating 
200 trajectories. A comparable speed-up is also observed when solving the adjoint equations, with the linearized form (20) proving 
significantly more efficient than the nonlinear one (17). 

In order to assess the effectiveness of the linearized dynamics in identifying the appropriate subspaces for model reduction, we 
simply compute the mean relative 𝐿2 error (Fig. 1)

https://github.com/ivanZanardi/ronek
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Table 2
Comparison of computational cost: FOM vs. linearized FOM for the RVC Model. This table illustrates the performance 
differences between the FOM and its linearized counterpart across various numerical operations.

Model Operation Device Time [s] - 1 Run Time [s] - 200 Runs 
FOM Simulation CPU - 8 Threads 1.25 × 102 2.50 × 104

Linearized FOM
Eigendecomposition CPU - 8 Threads 6.17 × 101 6.17 × 101
Simulation CPU - 8 Threads 2.19 × 10−2 4.38

Fig. 1. Relative 𝐿2 error of the linearized FOM for the RVC model. This figure presents the time evolution of the mean relative 𝐿2 error, along with a 95% confidence 
interval derived from 1 000 testing trajectories, using the linearized FOM.

e(𝑡) = 1 
𝑀

𝑀∑
𝑘=1

‖ 𝐰(𝑘)(𝑡) −𝐰(𝑘)
lin
(𝑡) ‖2‖ 𝐰(𝑘)(𝑡) ‖2 + 𝜀 

, (29)

between 𝐰lin given by (19) and the solution 𝐰 of (6) over 𝑀 = 1 000 trajectories. Here, we use 𝜀 = 10−7 to avoid division by zero. 
The relative 𝐿2 error is particularly relevant here because the methodology described in sections 3.1 to 3.3 produces optimal test 
and trial bases in the 𝐿2 sense. With a 95% confidence interval, the maximum relative 𝐿2 error is approximately 30%. This finding 
suggests that the linearized equations are sufficiently accurate to identify appropriate subspaces for Petrov-Galerkin projection of the 
full-order nonlinear equations. (In the interest of clarity, we remark that the error goes to zero at long time because the linear system 
describes fluctuations around the equilibrium solution.)

5.1.2. Models for macroscopic quantities

In this section, we seek models that accurately predict the time evolution of the system’s macroscopic quantities such as mass and 
energy, and we therefore choose 𝐲 ∈ℝ2 in (7) to contain the zeroth and first-order moments (i.e., the mass and energy, respectively) 
of the distribution. Fig. 2 illustrates the time evolution of the mean relative error between the FOM output 𝑦𝑗 (𝑡) and the predicted 
output 𝑦̂𝑗 (𝑡) from CoBRAS (left panels) and POD (right panels) for the 𝑗 = 0 (top row) and 𝑗 = 1 (bottom row) moments of O2 energy 
level population. This analysis is based on 𝑀 = 1 000 different testing trajectories across various reduced system dimensions, 𝑟. 
(The equation for atomic oxygen is not included in 𝑟.) The figure is essential for understanding how the model performs over time 
and across different reduced dimensions. With CoBRAS, the error remains consistently low, under 1%, even for a small reduced 
dimension of 𝑟 = 7, representing a compression of approximately 870 times. By contrast, the POD method yields predictions with 
errors consistently exceeding 1%. Similar qualitative performance is observed for the time evolution of the energy (bottom row), 
where we see that CoBRAS maintains low errors across all times, while POD exhibits errors that are consistently above 10%.

Fig. 3 presents a comparative analysis of various reduced-order modeling approaches for a test case with initially cold gas. The test 
condition includes a system temperature of 𝑇 = 10 000 K, an initial pressure of 𝑝0 = 1 000 Pa, initial molar concentration of atomic 
oxygen 𝑥O0

= 0.05, and initial equilibrium temperature 𝑇0 = 500 K. In the left panels, we show the time evolution of the zeroth 
and first-order moments, while the right panels illustrate the relative error. Additional comparisons at various testing temperatures 
for the same initial condition are provided in figure S1 of the Supplementary Material. These figures are crucial for evaluating the 
performance of CoBRAS technique against the POD method, the traditional ROMs, and the reference FOM solution. The dimensions 
of the reduced-order models are as follows: 𝑟 = 8 for CoBRAS and POD ROMs, 𝑟 = 24 for CG (using 12 bins), and 𝑟 = 2 for MT. The 
left panels demonstrate that for both moments, the CoBRAS-based ROM closely matches the FOM, with a maximum error consistently 
below 1%. Additionally, CoBRAS outperforms the POD, CG, and MT approaches, each of which fails to accurately predict the system 
dynamics. These performance differences become even more pronounced in the error evolution depicted in the right panels. For 
the zeroth-order moment, the point-wise error for POD, CG, and MT approaches 100%, whereas for the first-order moment, it is 
approximately 10% for CG and over 100% for POD and MT. The high error in MT’s energy evolution is due to the separation of 
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Fig. 2. Mean moments error for RVC model using CoBRAS and POD ROMs. Time evolution of the mean relative errors for the zeroth (top row) and first-order (bottom 
row) moments of the O2 energy level population across 1 000 testing trajectories. Results are shown for different dimensions 𝑟 of the CoBRAS (left panels) and POD 
(right panels) ROM systems.

energy modes, where the rotational mode is in equilibrium with the translational mode at temperature 𝑇 , while the vibrational 
energy is modeled with a fictitious temperature 𝑇𝑣 . This separation of energy modes is a fundamental assumption distinguishing MT 
from the other ROMs, rooted in physical considerations not discussed here.

5.1.3. Models for microscopic quantities

Here, we seek models that can provide an accurate description of the whole distribution along trajectories. In principle, this can 
be done by choosing the output 𝐲 to be equal to the state vector 𝐰, but the evaluation of the gradient covariance would be rather 
expensive (given that ∇𝐹 scales with dim(𝐲)). Instead, we choose 𝐲 ∈ℝ10 to contain the first ten moments of the distribution, since 
user experience suggests that a model that is capable of tracking these moments is likely capable of producing accurate estimates of 
the distribution itself. Fig. 4 presents the time evolution of the mean relative error between the FOM solution 𝐰(𝑡) and the predicted 
solutions 𝐰̂(𝑡) obtained from CoBRAS (left panel) and POD (right panel) for the O2 energy level population. The error is calculated over 
𝑀 = 1 000 trajectories and for different reduced system dimension 𝑟. The figure highlights the model’s accuracy over time and across 
different reduced dimensions, demonstrating its effectiveness in predicting microscopic quantities. The error analysis is consistent 
with the considerations made for Fig. 2, indicating that the overall error remains below 10% when using CoBRAS with 𝑟 ≥ 28, which 
corresponds to a compression factor of nearly 220. In contrast, the POD technique consistently yields results with higher errors 
compared to those produced by CoBRAS. It is worth remarking that neither POD nor CoBRAS guarantee positivity of the predicted 
state 𝐰̂, and we have observed that non-physical negative values may appear at very early times 𝑡 < 10−8 s. This is particularly true 
at low initial temperatures 𝑇0 ≤ 500 K, where the distribution spans approximately 20 orders of magnitude 

(
103 − 1023

)
, and the tail 

of the predicted distribution may take negative values.

Fig. 5 presents four snapshots of the O2 internal state population taken from the FOM and from CoBRAS, POD, and the CG 
reduced-order models, each operating at a reduced dimensionality of 𝑟 = 24 (with 12 bins for the CG approach). This figure is 
central for evaluating the effectiveness of the CoBRAS-based ROM in capturing microscopic scales of the physical system compared 
to POD and the conventional CG technique. This test case corresponds to the scenario illustrated in Fig. 3. Further comparisons at 
various testing temperatures for the same initial condition are provided in figure S2 of the Supplementary Material. In qualitative 
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Fig. 3. FOM vs. ROMs for RVC model: moments evolution. Time evolution of the zeroth (top row) and first-order (bottom row) moments of the O2 energy level population 
in an initially cold gas with 𝑇 = 10 000 K, as calculated using the FOM and various ROMs. The left panels display the computed moment evolution, while the right 
panels show the relative errors of the ROMs compared to the FOM. The CoBRAS and POD ROMs use a reduced model dimension of 𝑟 = 8, the CG ROM uses 𝑟 = 24, 
and the MT ROM uses 𝑟 = 2.

Fig. 4. Mean relative error in the distribution function for RVC model using CoBRAS and POD ROMs. Time evolution of the mean relative error in the O2 energy level 
population across 1 000 testing trajectories. Results are shown for different dimensions 𝑟 of the CoBRAS (left panel) and POD (right panel) ROM systems.

terms, CoBRAS displays consistently higher fidelity to the FOM across all snapshots, effectively capturing the microscopic details of 
the distribution function with greater accuracy than the other ROMs. Additionally, although the POD model demonstrates improved 
performance compared to the CG model, it still does not reach the accuracy achieved by the CoBRAS model. The discrepancy between 
CoBRAS and CG is particularly pronounced at 𝑡 = 3×10−6 s, where the quasi-steady-state (QSS) distribution is present. Here CoBRAS 
matches the reference solution very accurately, whereas the CG shows a vertical shift indicative of faster dynamics, as previously 
noted in Fig. 3. Notably, all ROMs successfully reconstruct the equilibrium distribution at 𝑡 = 10−4 s.
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Fig. 5. FOM vs. ROMs for RVC model: distribution snapshots. Time snapshots of the O2 energy level population in an initially cold gas with 𝑇 = 10 000 K, calculated 
using FOM, CoBRAS, POD, and CG reduced-order models. All ROMs have a dimension of 𝑟= 24.

Table 3
Computational cost comparison: FOM vs. CoBRAS ROM for the RVC model. The table reports total FLOPs 
and FLOP/Byte ratios for key numerical operations, including right-hand side (RHS) evaluation and linear 
system solve (LSS), along with estimates of system stiffness. Results are shown for the FOM and two ROM 
configurations.

FLOPs FLOP/Byte Fastest Timescale 
Model 𝑑 RHS - (𝑑2) LSS - (𝑑3) RHS - (1) LSS - (𝑑) 1∕|𝜆min|
FOM 6 116 7.480 × 107 1.526 × 1011 0.250 509.750 1.36 × 10−10

CoBRAS
25 1.225 × 103 1.167 × 104 0.227 2.160 5.35 × 10−10
9 1.530 × 102 6.480 × 102 0.193 0.818 1.29 × 10−9

5.1.4. Computational performance

In this section, we assess computational performance by examining the total number of floating-point operations (FLOPs) required 
to solve the FOM and the CoBRAS-based ROM at different dimensions. We also report the arithmetic intensity (see Appendix C), defined 
as the ratio of FLOPs to memory access in bytes (FLOP/Byte), for key numerical operations, along with estimates of system stiffness. 
While we acknowledge that additional hardware-dependent factors such as memory bandwidth, processor speed, and cache efficiency 
influence actual runtime performance, the FLOP count and FLOP/Byte ratio provide hardware-independent metrics that serve as useful 
proxies for comparing algorithmic efficiency.

As shown in Table 3, where 𝑑 denotes the system dimension (𝑑 = 𝑟+1 for the ROM), the ROM reduces the total number of FLOPs by 
over four orders of magnitude for right-hand side (RHS) evaluations, which primarily involve dense matrix-vector products with (𝑑2)
complexity (see equations (S.1.2)--(S.1.3) in the Supplementary Material and Appendix C.2), and by over seven orders of magnitude 
for the linear system solve (LSS) required by the implicit integration scheme, which has (𝑑3) complexity (see Appendix C.1). 
Additionally, the ROM results in a less stiff system, as indicated by the fastest timescale, quantified as the inverse of the smallest 
Jacobian eigenvalue, 1∕|𝜆min|. This reduced stiffness allows for larger time steps during time integration and contributes further to 
the computational savings.
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However, the efficiency of the RHS and LSS operations is ultimately constrained by their arithmetic intensity. Both operations 
exhibit relatively low FLOP/Byte ratios in the ROM setting, indicating that performance is likely to be limited by memory bandwidth 
rather than computational throughput. In such cases, the actual runtime gains from FLOP reductions may be smaller than expected 
due to the bottleneck in data transfer between memory and processor.

5.2. O2-O2 and O2-O vibrational collisional model

In this experiment, we focus on the vibrational excitation and dissociation of O2 molecules during collisions with either O atoms 
or other O2 molecules. The O2 molecule has 45 vibrational energy levels, resulting in a total of 𝑁 = 46 degrees of freedom for the 
system. We opted not to use the RVC model, as it would require managing an impractical kinetic database with billions of possible 
transitions. Instead, we employed the VC model, which is based on the RVC model but relies on the simplifying assumption of 
equilibrium (Maxwell-Boltzmann) distribution of the rotational levels,

𝑛𝑖

𝑛𝑣
=

𝑞𝑖

𝑄𝑣

, 𝑣 ∈  , 𝑖 ∈ 𝑣 , (30)

with

𝑞𝑖 = 𝑔𝑖 exp
(
−

𝜖𝑖

𝑘𝐵𝑇𝑣

)
(31)

and 𝑄𝑣 =
∑

𝑖∈𝑣 𝑞𝑖 being the partition function of the vibrational level 𝑣.  denotes the set of all vibrational levels, while 𝑣 refers to 
the set of rotational levels with the same vibrational level 𝑣. In the VC model, it is further assumed that rotation and translation are 
in equilibrium, such that 𝑇𝑣 = 𝑇 for all 𝑣 ∈  . Each vibrational level can be characterized by an energy 𝜖𝑣 and a fictitious degeneracy 
𝑔𝑣, which are determined as follows

𝜖𝑣 =
1 
𝑄𝑣

∑
𝑖∈𝑣

𝑞𝑖𝜖𝑖 , (32)

𝑔𝑣 =𝑄𝑣 exp
(

𝜖𝑣

𝑘𝐵𝑇

)
. (33)

These values are then used in the computation of backward rates by enforcing detailed balance.

The kinetic database includes O2-O collisions as described in section 5.1, properly reduced for the equilibrium assumptions of 
rotational levels, as well as O2-O2 collisions, which involve three types of processes:

i. collisional excitation, including both inelastic (nonreactive) and exchange processes,

O2(𝑣) + O2(𝑤)
m𝑘e𝑣𝑤𝑝𝑞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←←←←←←←←←←←←←m𝑘e𝑝𝑞𝑣𝑤

O2(𝑝) + O2(𝑞) , (34)

ii. combined collisional dissociation and excitation,

O2(𝑣) + O2(𝑤)
m𝑘ed𝑣𝑤𝑝
←←←←←←←←←←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←←←←←←←←←←m𝑘er𝑝𝑣𝑤

O2(𝑝) + O+O , (35)

iii. collisional dissociation,

O2(𝑣) + O2(𝑤)
m𝑘d𝑣𝑤
←←←←←←←←←←←←←←←←←←←←←←←⇀ 
↽←←←←←←←←←←←←←←←←←←←←←←←m𝑘r𝑣𝑤

O+O+O+O , (36)

where 𝑤, 𝑝 and 𝑞 represent different vibrational levels. The VC model here described is governed by the following set of equations:

𝑑𝑛𝑣

𝑑𝑡 
=

∑
𝑤,𝑝,𝑞∈

(
−m𝑘e

𝑣𝑤𝑝𝑞
𝑛𝑣𝑛𝑤 + m𝑘e

𝑝𝑞𝑣𝑤
𝑛𝑝𝑛𝑞

)

+
∑

𝑤,𝑝∈

(
−m𝑘ed

𝑣𝑤𝑝
𝑛𝑣𝑛𝑤 + m𝑘er

𝑝𝑣𝑤
𝑛𝑝𝑛

2
O

)

+
∑
𝑤∈

(
−m𝑘d𝑣𝑤𝑛𝑣𝑛𝑤 + m𝑘r𝑣𝑤𝑛

4
O

)
+

∑
𝑤∈

(
−a𝑘e

𝑣𝑤
𝑛𝑣𝑛O + a𝑘e

𝑤𝑣
𝑛𝑤𝑛O

)
− a𝑘d𝑣𝑛𝑣𝑛O + a𝑘r𝑣𝑛

3
O
, (37)

𝑑𝑛O

𝑑𝑡 
=− 2

∑
𝑣∈

𝑑𝑛𝑣

𝑑𝑡 
. (38)
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Table 4
Sampled parameter space for the VC model. Sampling bounds and distributions for 
each parameter used to generate the training and testing trajectories.

𝑇 [K] 𝜌 [kg/m3] 𝑤O0
𝑇0 [K] 

Minimum 10 000 10−4 0 500 
Maximum 10 000 1 1 10 000 
Distribution - Log-uniform Uniform Log-uniform 

Table 5
Comparison of computational cost: FOM vs. linearized FOM for the VC Model. This table illustrates the performance 
differences between the FOM and its linearized counterpart across various numerical operations.

Model Operation Device Time [s] - 1 Run Time [s] - 200 Runs 
FOM Simulation CPU - 4 Threads 6.14 × 10−2 1.23 × 101

Linearized FOM
Eigendecomposition CPU - 4 Threads 7.36 × 10−4 7.36 × 10−4
Simulation CPU - 4 Threads 5.16 × 10−5 1.03 × 10−2

Fig. 6. Relative 𝐿2 error of the linearized FOM for the VC model. This figure presents the time evolution of the mean relative 𝐿2 error, along with a 95% confidence 
interval derived from 1 000 testing trajectories, using the linearized FOM.

For interested readers, the linearized FOM equations necessary to implement the method described in Sections 3.1 to 3.3, as well as 
the derivation of the ROM, are available in Supplementary Material sections S.2.1 and S.2.2.

The bounds and distributions used for sampling the training and the 𝑀 = 1 000 testing trajectories for the VC model are provided 
in Table 4. For this thermochemical system, we consider a single temperature of 𝑇 = 10 000 K. 

5.2.1. Linearized FOM performances

In line with the analysis in section 5.1.1, we assess the efficiency and accuracy of the linearized FOM to estimate the state and 
gradient covariance matrices associated with the VC model. As in the previous section, we observe that using the linearized FOM 
leads to a significant reduction in computational cost (see Table 5) while also providing a very good approximation of the subspaces 
on which the nonlinear dynamics evolve (see Fig. 6). In this experiment, we use half the number of threads (4 instead of 8) due to 
the smaller problem dimension compared to the first experiment. 

5.2.2. Models for macroscopic quantities

In this section, we seek models that accurately predict the time evolution of the system’s macroscopic quantities such as mass and 
energy, and we therefore choose 𝐲 ∈ℝ2 in (7) to contain the zeroth and first-order moments (i.e., the mass and energy, respectively) 
of the distribution. Fig. 7 presents the time evolution of the mean relative error between the FOM output 𝑦𝑗 (𝑡) and the predicted 
output 𝑦̂𝑗 (𝑡) from the CoBRAS (left panels) and POD (right panels) ROMs for the 𝑗 = 0 (top row) and 𝑗 = 1 (bottom row) moments 
of the O2 energy level population in the VC model. This analysis is conducted over 𝑀 = 1 000 test trajectories for various reduced 
system dimensions, 𝑟. (The equation for atomic oxygen is not included in 𝑟.) The figure provides insight into the model’s accuracy 
over time and across different reduced dimensions when evaluating macroscopic quantities. For CoBRAS, the overall error remains 
consistently low, staying below 1% for both moments even with a reduced system size of 𝑟 = 3, achieving a compression rate above 
11. By contrast, the POD ROM is significantly more inaccurate and it may even be unstable for very low dimensions (see the 𝑟 = 3
curve in the top right panel). Similar qualitative behavior is observed in the bottom row of Fig. 7, which is the analog of the top row 
for the first-order moment (i.e., the energy of the O2 population).
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Fig. 7. Mean moments error for VC model using CoBRAS and POD ROMs. Time evolution of the mean relative errors for the zeroth (top row) and first-order (bottom 
row) moments of the O2 energy level population across 1 000 testing trajectories. Results are shown for different dimensions 𝑟 of the CoBRAS (left panels) and POD 
(right panels) ROM systems.

Fig. 8 provides a comparative analysis of different reduced-order modeling techniques for a test case involving an initially cold 
gas, focusing on the zeroth and first-order moments of the O2 internal energy distribution function. In the left panels, we show the 
time evolution of these moments, while the right panels display the relative error. The initial conditions match those in Fig. 3, with 
the ROM dimension set to 𝑟 = 4. These figures are essential for assessing the performance of the CoBRAS technique in comparison to 
the POD method and the reference FOM solution for macroscopic quantities. As shown in the left panels, CoBRAS closely matches the 
FOM results, maintaining a maximum error below 1% over the entire time frame for both moments. This demonstrates the superior 
accuracy of CoBRAS relative to POD, for which the error exceeds 10%.

5.2.3. Models for microscopic quantities

Here, we seek models that can provide an accurate description of the whole distribution along trajectories. We follow the same 
rationale as in section 5.1.3 and we choose 𝐲 ∈ ℝ10. Fig. 9 illustrates the time evolution of the mean relative error between the 
FOM solution 𝐰(𝑡) and the predicted solutions 𝐰̂(𝑡) obtained from the CoBRAS (left panel) and POD (right panel) ROMs for the O2
energy level population. The comparison uses the same set of 𝑀 = 1 000 trajectories as in the previous section, evaluating the ROMs 
for various reduced system dimensions 𝑟. This figure emphasizes the accuracy of the models over time and across different reduced 
dimensions in capturing microscopic quantities. As for the RVC system that we considered in the previous sections, the overall error 
remains below 10% for most of the dynamics when employing CoBRAS with 𝑟 ≥ 10, corresponding to a compression factor of nearly 
4.5. By contrast, POD-Galerkin consistently produces results with higher errors. As already noted in the RVC system, neither POD

Galerkin nor CoBRAS guarantee the positivity of the predicted state 𝐰̂ and this can lead to non-physical negative values at very early 
times.

Fig. 10 displays four snapshots of the distribution function calculated using the FOM, along with CoBRAS and POD ROMs, with 
the reduced model dimension set to 𝑟 = 8. This case corresponds to the one presented in Fig. 8. For all snapshots, CoBRAS closely 
matches the FOM results, whereas POD exhibits significant discrepancies in the tails (i.e., high energy levels) of the distribution 
function. Notably, all ROMs successfully reconstruct the equilibrium distribution at 𝑡 = 10−4 s.
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Fig. 8. FOM vs. ROMs for VC model: moments evolution. Time evolution of the zeroth (top row) and first-order (bottom row) moments of the O2 energy level population 
in an initially cold gas with 𝑇 = 10 000 K, as calculated using the FOM and various ROMs. The left panels display the computed moment evolution, while the right 
panels show the relative errors of the ROMs compared to the FOM. The CoBRAS and POD ROMs utilize a reduced model dimension of 𝑟= 4.

Fig. 9. Mean relative error in the distribution function for VC model using CoBRAS and POD ROMs. Time evolution of the mean relative error in the O2 energy level 
population across 1 000 testing trajectories. Results are shown for different dimensions 𝑟 of the CoBRAS (left panel) and POD (right panel) ROM systems.

5.2.4. Computational performance

Following the same methodology as in section 5.1.4, we assess here the computational performance of the CoBRAS-based ROM 
in comparison to the FOM for the VC model.

As shown in Table 6, the ROM reduces the total number of FLOPs by more than two orders of magnitude for RHS evaluations, which 
primarily involve dense 3D tensor double contractions with (𝑑3) complexity (see equations (S.1.2)--(S.1.3) in the Supplementary 
Material and Appendix C.3), and by a similar amount for the linear system solve (LSS) required by the implicit integration scheme. In 
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Fig. 10. FOM vs. ROMs for VC model: distribution snapshots. Time snapshots of the O2 energy level population in an initially cold gas with 𝑇 = 10 000 K, calculated 
using FOM, CoBRAS, and POD reduced-order models. All ROMs have a dimension of 𝑟= 8.

Table 6
Computational cost comparison: FOM vs. CoBRAS ROM for the VC model. The table reports total FLOPs and 
FLOP-per-byte ratios for key numerical operations, including right-hand side (RHS) evaluation and linear 
system solve (LSS), as well as estimates of system stiffness. Results are shown for the FOM and various 
dimensions of the CoBRAS model.

FLOPs FLOP/Byte Fastest Timescale 
Model 𝑑 RHS - (𝑑3) LSS - (𝑑3) RHS - (1) LSS - (𝑑) 1∕|𝜆min|
FOM 46 2.920 × 105 6.912 × 104 0.375 3.913 1.43 × 10−9

CoBRAS
9 2.178 × 103 6.480 × 102 0.364 0.818 5.39 × 10−9
5 3.700 × 102 1.333 × 102 0.343 0.476 2.27 × 10−8

addition, the ROM yields a significantly less stiff system, allowing for integration time steps up to ten times larger than those required 
by the FOM.

As observed previously in Table 3, the efficiency of RHS and LSS operations is ultimately limited by their arithmetic intensity. In 
this case as well, both operations exhibit even lower FLOP/Byte ratios in the ROM setting, indicating that actual runtime gains from 
FLOP reductions may be limited by memory bandwidth and data transfer. 

6. Conclusions

This work presents a data-driven Petrov-Galerkin reduced-order model (ROM) for detailed state-to-state kinetics in thermochemical 
nonequilibrium, avoiding the conventional assumptions often required in traditional models. In contrast to standard ROMs such as 
multi-temperature (MT) or coarse-grained (CG) models, which rely on empirical or physical assumptions, we sought a more flexible, 
assumption-free, and computationally efficient approach.

To leverage the low-rank dynamics often observed in kinetic systems under thermal nonequilibrium, we used the recently devel

oped ``Covariance Balancing Reduction using Adjoint Snapshots'' (CoBRAS) [53] technique as the foundation of our model reduction 
pipeline. This formulation allows for the computation of a linear projection operator for Petrov-Galerkin modeling by balancing the 
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state and gradient covariances associated with the full-order system (the state-to-state kinetic equations in our specific case). Our 
analysis revealed that these systems generally do not exhibit significant nonlinear behavior, allowing us to apply linearized equations 
around thermochemical equilibrium during the data-collection phase of CoBRAS. Experimental validation of our test cases confirmed 
that the linearized equations provided a sufficiently accurate description of the subspace on which the nonlinear system evolves. 
While the linearization facilitated rapid data generation with minimal information loss, we acknowledge that we could also utilize 
the fully nonlinear system. However, this would lead to a much more computationally expensive training phase, with the computa

tional cost seeing increases of two to four orders of magnitude. The approach was applied to two distinct thermochemical systems: a 
pure oxygen rovibrational collisional (RVC) model and a vibrational collisional (VC) model. In both cases, CoBRAS computed models 
with excellent predictive accuracy. In particular, these models exhibited relative errors of less than 1% for macroscopic quantities 
(i.e., moments) and under 10% for microscopic quantities (i.e., energy level population) along with excellent compression rates. 
Additionally, our models significantly outperformed existing MT and CG models, as well as the Galerkin model based on Proper 
Orthogonal Decomposition (POD).

The proposed data-driven approach offers several advantages over traditional models, such as MT or CG. By relying solely on the 
structure of the underlying state-to-state governing equations, the proposed method eliminates the need for empirical or physical 
assumptions, resulting in enhanced accuracy and flexibility across various nonequilibrium conditions. Furthermore, it bypasses the 
time-consuming system analysis or optimization typically required to determine the optimal reduced representation, enabling the 
generation of the reduced model within a few minutes. Additionally, the proposed projection-based model avoids the computational 
costs and potential errors associated with interpolation needed for nonlinear models such as CG. For these reasons, we believe that 
this work lays the foundation for more efficient computational tools that preserve the fidelity of detailed state-to-state kinetics while 
making them suitable for real-world applications in fields such as hypersonic flight, plasma dynamics, and combustion.

While the proposed data-driven ROM shows great potential, further research is required to improve its performance. A significant 
limitation is that the current model does not preserve the positivity of the distribution function by design, which could result in nega

tive values during the initial stages of the dynamics (e.g., 𝑡 < 10−8 s). Addressing this issue and testing the model in adiabatic systems 
will be priorities in future research to ensure the model’s applicability in real-world computational fluid dynamics applications.
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Appendix A. Proof of Proposition 1

Proof. Given the exact solution

𝐰(𝑡) =𝐰(𝑡0) +
𝑡 

∫
𝑡0

𝐟(𝐰(𝜏);𝜽) 𝑑𝜏 , (A.1)

to the ordinary differential equation (6), it follows that a small perturbation 𝛿𝐰(𝑡0) induces a corresponding change 𝛿𝐰(𝑡) according 
to

𝛿𝐰(𝑡) = 𝛿𝐰(𝑡0) +
𝑡 

∫
𝑡0

𝐷𝐟(𝐰(𝜏);𝜽)𝛿𝐰(𝜏) 𝑑𝜏 ∶= (𝑡, 𝑡0)𝛿𝐰(𝑡0) . (A.2)

Here, (𝑡, 𝑡0) ∶ℝ𝑁 →ℝ𝑁 is the state transition matrix, which satisfies the linear time-varying dynamics

𝑑(𝑡, 𝑡0)
𝑑𝑡 

=𝐷𝐟(𝐰(𝑡);𝜽)(𝑡, 𝑡0) . (A.3)
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Assuming an Euclidean inner product on ℝ𝑁 , the adjoint ⊺(𝑡0, 𝑡) satisfies the adjoint equation

−
𝑑⊺(𝑡0, 𝑡)

𝑑𝑡 
=𝐷𝐟(𝐰(𝑡);𝜽)⊺⊺(𝑡0, 𝑡) . (A.4)

Now, recalling that 𝑦𝑗 (𝑡) = 𝐞⊺
𝑗
𝐂𝐰(𝑡), where 𝐞𝑗 is the 𝑗-th unit vector in the standard basis of ℝdim(𝐲), we have

𝛿𝑦𝑗 (𝑡𝑘) = 𝐞⊺
𝑗
𝐂𝛿𝐰(𝑡𝑘) = 𝐞⊺

𝑗
𝐂(𝑡𝑘, 𝑡0)𝛿𝐰(𝑡0) ∶= ⟨𝐠(𝑘)

𝑗
, 𝛿𝐰(𝑡0)⟩ (A.5)

where 𝐠(𝑘)
𝑗

is the gradient of 𝑦𝑗 (𝑡𝑘) with respect to 𝐰(𝑡0), and the last equality follows from the definition of the gradient. Then, it 
follows immediately that

𝐠(𝑘)
𝑗

=⊺(𝑡0, 𝑡𝑘)𝐂⊺𝐞𝑗 . (A.6)

Using (A.4) we recover (17) and this concludes the proof. □

Appendix B. Covariance matrices

The probability density functions used to compute the covariance matrices in equations (15) and (16) are defined as follows

𝑓T0 (𝑡0) =
1 

𝑏𝑡0 − 𝑎𝑡0
, (B.1)

𝑓𝚯(𝜽) = 𝑓𝚯(𝑇 , 𝜌) =
1 

𝑏𝑇 − 𝑎𝑇

1 
𝑏𝜌 − 𝑎𝜌

, (B.2)

𝑓𝐌(𝝁) = 𝑓𝐌(𝑤O0
, 𝑇0) =

1 
𝑏𝑤O0

− 𝑎𝑤O0

1 

𝑇0

[
ln
(
𝑏𝑇0

)
− ln

(
𝑎𝑇0

)] . (B.3)

Here, 𝑎(⋅) and 𝑏(⋅) represent the distribution bounds provided in Tables 1 and 4 for 𝑓𝚯 and 𝑓𝐌, while for 𝑓T0 , the bounds are 𝑎𝑡0 = 0
s and 𝑏𝑡0 = 10−2 s.

Appendix C. Arithmetic intensity

The arithmetic intensity of a computational kernel is defined as the ratio between the number of floating-point operations (FLOPs) 
and the amount of data transferred to or from memory (in bytes) during the computation. It quantifies how much computation is 
performed per unit of data movement and is a key metric for understanding whether a given operation is compute-bound (limited by 
processing speed) or memory-bound (limited by memory bandwidth).

C.1. Linear system solve

We estimate the arithmetic intensity of solving a dense linear system of the form

𝐀𝐱 = 𝐛 , (C.1)

where 𝐀 ∈ℝ𝑑×𝑑 , and 𝐱, 𝐛∈ℝ𝑑 .

FLOP count For a dense system solved using LU decomposition (no pivoting), the computational cost consists of:

• LU factorization: 2
3
𝑑3 FLOPs,

• Forward and backward substitution: approximately 2𝑑2 FLOPs.

Therefore, we approximate the total FLOPs as:

FLOPs ≈ 2
3
𝑑3 + 2𝑑2 . (C.2)

Memory accesses Assuming double-precision floating-point numbers (8 bytes per value), the memory traffic includes:

• Reading the matrix 𝐀: 8𝑑2 bytes,

• Reading the right-hand side vector 𝐛: 8𝑑 bytes,

• Writing the solution vector 𝐱: 8𝑑 bytes.

Thus, the total memory access is approximately:

Bytes ≈ 8(𝑑2 + 2𝑑) . (C.3)
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Arithmetic intensity The resulting arithmetic intensity is:

FLOP∕Byte ≈ 𝑑

12
𝑑 + 3
𝑑 + 2

. (C.4)

This expression shows that arithmetic intensity increases linearly with the problem size 𝑑.

C.2. Matrix-vector product

We estimate the arithmetic intensity of a dense matrix-vector product of the form:

𝐲 =𝐀𝐛 , (C.5)

where 𝐀 ∈ℝ𝑑×𝑑 , and 𝐛, 𝐲 ∈ℝ𝑑 .

FLOP count In a dense matrix-vector multiplication, each output element involves 𝑑 multiplications and 𝑑 − 1 additions, yielding:

FLOPs ≈ 𝑑(2𝑑 − 1) . (C.6)

Memory accesses The memory access pattern is identical to that described in equation (C.3).

Arithmetic intensity The resulting arithmetic intensity is:

FLOP∕Byte ≈ 1
8
2𝑑 − 1
𝑑 + 2 

. (C.7)

For large 𝑑, the intensity approaches 1/4, indicating that the matrix-vector product is limited by memory access rather than compu

tation.

C.3. Tensor double contraction

We estimate the arithmetic intensity of a double contraction between a 3D tensor and two vectors:

𝐲 =𝐀  ∶ 𝐛𝐛⊺ , (C.8)

where 𝐀 ∈ℝ𝑑×𝑑×𝑑 , and 𝐛, 𝐲 ∈ℝ𝑑 .

FLOP count Each output element involves 2𝑑2 multiplications and 𝑑2 − 1 additions, for a total of:

FLOPs ≈ 𝑑(3𝑑2 − 1) . (C.9)

Memory accesses The total memory access is approximately:

Bytes ≈ 8(𝑑3 + 2𝑑) . (C.10)

Arithmetic intensity The arithmetic intensity is then:

FLOP∕Byte ≈ 1
8
3𝑑2 − 1
𝑑2 + 2 

. (C.11)

For large 𝑑, this expression approaches 3∕8, which is higher than that of a matrix-vector product but still relatively low. This indicates 
that the operation remains memory-bound, with performance primarily constrained by memory bandwidth rather than computational 
throughput.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcp.2025.113999. 

Data availability

The code used in this work is available online at https://github.com/ivanZanardi/ronek.
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