Note
Go to the end to download the full example code.
Eigendecomposition Demonstration
Given the linear dynamics \(d_t q = Aq\), we compute the eigenvalues of the matrix \(A\) closest to the origin using the shift-and-invert technique. This script demonstrates the following:
LU decomposition using
create_mumps_solver()
Eigendecomposition using
eig()
import os
import matplotlib.pyplot as plt
import numpy as np
import resolvent4py as res4py
from petsc4py import PETSc
import cgl
plt.rcParams.update(
{
"font.family": "serif",
"font.sans-serif": ["Computer Modern"],
"font.size": 18,
"text.usetex": True,
}
)
comm = PETSc.COMM_WORLD
# Read the A matrix from file
res4py.petscprint(comm, "Reading matrix from file...")
load_path = "data/"
N = 2000
Nl = res4py.compute_local_size(N)
sizes = ((Nl, N), (Nl, N))
names = [
load_path + "rows.dat",
load_path + "cols.dat",
load_path + "vals.dat",
]
A = res4py.read_coo_matrix(names, sizes)
# Compute the eigendecomposition of L using shift and invert about s.
# We need to define a matrix M = sI - A, compute its lu decomposition,
# define a corresponding MatrixLinearOperator L and compute its eigendecomp.
res4py.petscprint(comm, "Computing LU decomposition...")
s = 0.0
M = res4py.create_AIJ_identity(comm, sizes)
M.scale(s)
M.axpy(-1.0, A)
ksp = res4py.create_mumps_solver(M)
res4py.check_lu_factorization(M, ksp)
L = res4py.linear_operators.MatrixLinearOperator(M, ksp)
# Compute the eigendecomp.
res4py.petscprint(comm, "Running Arnoldi iteration...")
krylov_dim = 50
n_evals = 10
D, V = res4py.linalg.eig(
L, L.solve, krylov_dim, n_evals, lambda x: s - 1.0 / x
)
# Check convergence
L.destroy()
L = res4py.linear_operators.MatrixLinearOperator(A)
res4py.linalg.check_eig_convergence(L.apply, D, V)
# Destroy objects
L.destroy()
V.destroy()
# Make some plots
if comm.getRank() == 0:
l = 30 * 2
x = np.linspace(-l / 2, l / 2, num=N, endpoint=True)
nu = 1.0 * (2 + 0.4 * 1j)
gamma = 1 - 1j
mu0 = 0.38
mu2 = -0.01
sigma = 0.4
system = cgl.CGL(x, nu, gamma, mu0, mu2, sigma)
save_path = "results/"
os.makedirs(save_path) if not os.path.exists(save_path) else None
evals = system.compute_exact_eigenvalues(n_evals)
D = np.diag(D)
plt.figure()
plt.plot(D.imag, D.real, "ko", label="res4py")
plt.plot(evals.imag, evals.real, "rx", label="exact")
ax = plt.gca()
ax.set_xlabel(r"$\mathrm{Real}(\lambda_j)$")
ax.set_ylabel(r"$\mathrm{Imag}(\lambda_j)$")
ax.set_title(r"Eigenvalues $\lambda$")
ax.axhline(y=0.0, linewidth=1.0, color="blue", alpha=0.3)
plt.legend()
plt.tight_layout()
plt.savefig(save_path + "eigenvalues.png")